Lysine synthesis and catabolism are coordinately regulated during tobacco seed development. 1994

H Karchi, and O Shaul, and G Galili
Department of Plant Genetics, Weizmann Institute of Science, Rehovot, Israel.

The regulation of synthesis and accumulation of the essential amino acid lysine was studied in seeds of transgenic tobacco plants expressing, in a seed-specific manner, two feedback-insensitive bacterial enzymes: dihydrodipicolinate synthase (EC 4.2.1.52) and aspartate kinase (EC 2.7.2.4). High-level expression of the two bacterial enzymes resulted in only a slight increase in free lysine accumulation at intermediate stages of seed development, while free lysine declined to the low level of control plants toward maturity. To test whether enhanced catabolism may have contributed to the failure of free lysine to accumulate in seeds of transgenic plants, we analyzed the activity of lysine-ketoglutarate reductase (EC 1.5.1.7), an enzyme that catabolizes lysine into saccharopine. In both the control and the transgenic plants, the timing of appearance of lysine-ketoglutarate reductase activity correlated very closely with that of dihydrodipicolinate synthase activity, suggesting that lysine synthesis and catabolism were coordinately regulated during seed development. Notably, the activity of lysine-ketoglutarate reductase was significantly higher in seeds of the transgenic plants than in the controls. Coexpression of both bacterial enzymes in the same plant resulted in a significant increase in the proportions of lysine and threonine in seed albumins. Apparently, the normal low steady-state levels of free lysine and threonine in tobacco seeds may be rate limiting for the synthesis of seed proteins, which are relatively rich in these amino acids.

UI MeSH Term Description Entries
D008239 Lysine An essential amino acid. It is often added to animal feed. Enisyl,L-Lysine,Lysine Acetate,Lysine Hydrochloride,Acetate, Lysine,L Lysine
D010940 Plant Proteins Proteins found in plants (flowers, herbs, shrubs, trees, etc.). The concept does not include proteins found in vegetables for which PLANT PROTEINS, DIETARY is available. Plant Protein,Protein, Plant,Proteins, Plant
D010947 Plants, Toxic Plants or plant parts which are harmful to man or other animals. Plants, Poisonous,Plant, Poisonous,Plant, Toxic,Poisonous Plant,Poisonous Plants,Toxic Plant,Toxic Plants
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D006836 Hydro-Lyases Enzymes that catalyze the breakage of a carbon-oxygen bond leading to unsaturated products via the removal of water. EC 4.2.1. Dehydratase,Dehydratases,Hydrase,Hydrases,Hydro Lyase,Hydro-Lyase,Hydro Lyases,Lyase, Hydro,Lyases, Hydro
D001222 Aspartate Kinase An enzyme that catalyzes the formation of beta-aspartyl phosphate from aspartic acid and ATP. Threonine serves as an allosteric regulator of this enzyme to control the biosynthetic pathway from aspartic acid to threonine. EC 2.7.2.4. Aspartokinase,Aspartate Kinase I,Aspartate Kinase II,Aspartate Kinase III,Aspartyl Kinase,Kinase I, Aspartate,Kinase II, Aspartate,Kinase III, Aspartate,Kinase, Aspartate,Kinase, Aspartyl
D012443 Saccharopine Dehydrogenases Amine oxidoreductases that use either NAD+ (EC 1.5.1.7) or NADP+ (EC 1.5.1.8) as an acceptor to form L-LYSINE or NAD+ (EC 1.5.1.9) or NADP+ (EC 1.5.1.10) as an acceptor to form L-GLUTAMATE. Deficiency of this enzyme causes HYPERLYSINEMIAS. Saccharopine Dehydrogenase,Lysine-2-Oxoglutarate Reductase,Lysine-Ketoglutarate Reductase,Saccharopine Dehydrogenase (NAD+, L-Glutamate Forming),Saccharopine Dehydrogenase (NAD+, L-Lysine Forming),Saccharopine Dehydrogenase (NADP+, L-Glutamate Forming),Saccharopine Dehydrogenase (NADP+, L-Lysine Forming),Dehydrogenase, Saccharopine,Dehydrogenases, Saccharopine,Lysine 2 Oxoglutarate Reductase,Lysine Ketoglutarate Reductase,Reductase, Lysine-2-Oxoglutarate,Reductase, Lysine-Ketoglutarate
D012639 Seeds The encapsulated embryos of flowering plants. They are used as is or for animal feed because of the high content of concentrated nutrients like starches, proteins, and fats. Rapeseed, cottonseed, and sunflower seed are also produced for the oils (fats) they yield. Diaspores,Elaiosomes,Embryos, Plant,Plant Embryos,Plant Zygotes,Zygotes, Plant,Diaspore,Elaiosome,Embryo, Plant,Plant Embryo,Plant Zygote,Seed,Zygote, Plant
D013912 Threonine An essential amino acid occurring naturally in the L-form, which is the active form. It is found in eggs, milk, gelatin, and other proteins. L-Threonine,L Threonine

Related Publications

H Karchi, and O Shaul, and G Galili
June 2001, Current opinion in plant biology,
H Karchi, and O Shaul, and G Galili
January 1992, Proceedings of the National Academy of Sciences of the United States of America,
H Karchi, and O Shaul, and G Galili
July 2010, Journal of immunology (Baltimore, Md. : 1950),
H Karchi, and O Shaul, and G Galili
June 2015, Molecular and cellular biology,
Copied contents to your clipboard!