Inhibition of topoisomerase II alpha activity in CHO K1 cells by 2-[(aminopropyl)amino]ethanethiol (WR-1065). 1994

D J Grdina, and A Constantinou, and N Shigematsu, and J S Murley
Center for Mechanistic Biology and Biotechnology, Argonne National Laboratory, Illinois 60439.

The aminothiol 2-[(aminopropyl)amino]ethanethiol (WR-1065) is the active thiol of the clinically studied radioprotective agent S-2-(3-aminopropylamino)ethylphosphorothioic acid (WR-2721). WR-1065 is an effective radiation protector when it is administered 30 min prior to exposure of Chinese hamster ovary K1 cells to radiation (i.e., a dose modification factor of 1.4) at a concentration of 4 mM. Under these exposure conditions, topoisomerase (Topo) I and II alpha activities and associated protein contents were measured in cells of the K1 cell line using the DNA relaxation assay, the P4 unknotting assay and immunoblotting, respectively. WR-1065 was ineffective in modifying Topo I activity, but it did reduce Topo II alpha activity by an average of 50%. The magnitude of Topo II alpha protein content, however, was not affected by these exposure conditions. The effects on the cell cycle were monitored by the method of flow cytometry. Exposure of cells to 4 mM WR-1065 for up to 6 h resulted in a build-up of cells in the G2/M-phase compartment. However, under these conditions and in contrast to Topo II inhibitors used in chemotherapy, WR-1065 is an effective radioprotective agent capable of protecting against both radiation-induced cell lethality and mutagenesis. One of several mechanisms of action attributed to aminothiol compounds such as WR-1065 has been their ability to affect endogenous enzymatic reactions involved in DNA synthesis and repair and progression of cells through the phases of the cell cycle. These results are consistent with such a proposed mechanism and demonstrate in particular a modifying effect by WR-1065 on Topo II, which is involved in DNA synthesis.

UI MeSH Term Description Entries
D008624 Mercaptoethylamines Ethylamines, including CYSTEAMINE, that contain a sulfhydryl group in their structure.
D011837 Radiation-Protective Agents Drugs used to protect against ionizing radiation. They are usually of interest for use in radiation therapy but have been considered for other purposes, e.g. military. Radiation Protectant,Radiation Protective Agent,Radiation-Protective Agent,Radiation-Protective Drug,Radioprotective Agent,Radioprotective Agents,Radioprotective Drug,Agents, Radiation-Protective,Radiation Protectants,Radiation Protective Agents,Radiation-Protective Drugs,Radiation-Protective Effect,Radiation-Protective Effects,Radioprotective Drugs,Agent, Radiation Protective,Agent, Radiation-Protective,Agent, Radioprotective,Agents, Radiation Protective,Agents, Radioprotective,Drug, Radiation-Protective,Drug, Radioprotective,Drugs, Radiation-Protective,Drugs, Radioprotective,Effect, Radiation-Protective,Effects, Radiation-Protective,Protectant, Radiation,Protectants, Radiation,Protective Agent, Radiation,Protective Agents, Radiation,Radiation Protective Drug,Radiation Protective Drugs,Radiation Protective Effect,Radiation Protective Effects
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D002474 Cell-Free System A fractionated cell extract that maintains a biological function. A subcellular fraction isolated by ultracentrifugation or other separation techniques must first be isolated so that a process can be studied free from all of the complex side reactions that occur in a cell. The cell-free system is therefore widely used in cell biology. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p166) Cellfree System,Cell Free System,Cell-Free Systems,Cellfree Systems,System, Cell-Free,System, Cellfree,Systems, Cell-Free,Systems, Cellfree
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004250 DNA Topoisomerases, Type II DNA TOPOISOMERASES that catalyze ATP-dependent breakage of both strands of DNA, passage of the unbroken strands through the breaks, and rejoining of the broken strands. These enzymes bring about relaxation of the supercoiled DNA and resolution of a knotted circular DNA duplex. DNA Topoisomerase (ATP-Hydrolysing),DNA Topoisomerase II,DNA Topoisomerase II alpha,DNA Topoisomerase II beta,DNA Type 2 Topoisomerase,TOP2A Protein,TOP2B Protein,Topoisomerase II,Topoisomerase II alpha,Topoisomerase II beta,Type II DNA Topoisomerase,alpha, Topoisomerase II,beta, Topoisomerase II
D004264 DNA Topoisomerases, Type I DNA TOPOISOMERASES that catalyze ATP-independent breakage of one of the two strands of DNA, passage of the unbroken strand through the break, and rejoining of the broken strand. DNA Topoisomerases, Type I enzymes reduce the topological stress in the DNA structure by relaxing the superhelical turns and knotted rings in the DNA helix. DNA Nicking-Closing Protein,DNA Relaxing Enzyme,DNA Relaxing Protein,DNA Topoisomerase,DNA Topoisomerase I,DNA Topoisomerase III,DNA Topoisomerase III alpha,DNA Topoisomerase III beta,DNA Untwisting Enzyme,DNA Untwisting Protein,TOP3 Topoisomerase,TOP3alpha,TOPO IIIalpha,Topo III,Topoisomerase III,Topoisomerase III beta,Topoisomerase IIIalpha,Topoisomerase IIIbeta,DNA Nicking-Closing Proteins,DNA Relaxing Enzymes,DNA Type 1 Topoisomerase,DNA Untwisting Enzymes,DNA Untwisting Proteins,Topoisomerase I,Type I DNA Topoisomerase,III beta, Topoisomerase,III, DNA Topoisomerase,III, Topo,III, Topoisomerase,IIIalpha, TOPO,IIIalpha, Topoisomerase,IIIbeta, Topoisomerase,Topoisomerase III, DNA,Topoisomerase, TOP3,beta, Topoisomerase III
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014965 X-Rays Penetrating electromagnetic radiation emitted when the inner orbital electrons of an atom are excited and release radiant energy. X-ray wavelengths range from 1 pm to 10 nm. Hard X-rays are the higher energy, shorter wavelength X-rays. Soft x-rays or Grenz rays are less energetic and longer in wavelength. The short wavelength end of the X-ray spectrum overlaps the GAMMA RAYS wavelength range. The distinction between gamma rays and X-rays is based on their radiation source. Grenz Ray,Grenz Rays,Roentgen Ray,Roentgen Rays,X Ray,X-Ray,Xray,Radiation, X,X-Radiation,Xrays,Ray, Grenz,Ray, Roentgen,Ray, X,Rays, Grenz,Rays, Roentgen,Rays, X,X Radiation,X Rays,X-Radiations

Related Publications

D J Grdina, and A Constantinou, and N Shigematsu, and J S Murley
May 1987, British journal of cancer,
D J Grdina, and A Constantinou, and N Shigematsu, and J S Murley
September 1984, International journal of radiation oncology, biology, physics,
D J Grdina, and A Constantinou, and N Shigematsu, and J S Murley
March 1986, Cancer research,
D J Grdina, and A Constantinou, and N Shigematsu, and J S Murley
February 1991, Radiation research,
D J Grdina, and A Constantinou, and N Shigematsu, and J S Murley
May 1991, Radiation research,
D J Grdina, and A Constantinou, and N Shigematsu, and J S Murley
February 1989, Radiation research,
D J Grdina, and A Constantinou, and N Shigematsu, and J S Murley
March 2000, Cancer research,
D J Grdina, and A Constantinou, and N Shigematsu, and J S Murley
March 2000, Journal of chromatography. B, Biomedical sciences and applications,
Copied contents to your clipboard!