Glucose tolerance and insulin release in malnourished rats. 1976

C Weinkove, and E A Weinkove, and B L Pimstone

1. Young Wistar rats were used as an experimental model to determine the effects of protein-energy malnutrition on glucose tolerance and insulin release. 2. Malnourished rats presented some of the features commonly found in human protein-energy malnutrition, such as failure to gain weight, hypoalbuminaemia, fatty infiltration of the liver and intolerance of oral and intravenous glucose loads. 3. The rate of disappearance of glucose from the gut lumen was greater in the malnourished rats but there was no significant difference in portal blood glucose concentration between normal and malnourished rats 5 and 10 min after an oral glucose load. 4. Insulin resistance was not thought to be the cause of the glucose intolerance in the malnourished animals since these rats had a low fasting plasma insulin concentration with a normal fasting blood glucose concentration and no impairment in their hypoglycaemic response to exogenous insulin administration. Furthermore, fasting malnourished rats were unable to correct the insulin-induced hypoglycaemia despite high concentrations of hepatic glycogen. 5. Malnourished rats had lower peak plasma insulin concentrations than normal control animals after provocation with oral and intravenous glucose, intravenous tolbutamide and intravenous glucose plus aminophyllin. This was not due to a reduction in the insulin content of the pancreas or potassium deficiency. Healthy weanling rats, like the older malnourished rats, had a diminished insulin response to intravenous glucose and intravenous tolbutamide. However, their insulin response to stimulation with intravenous glucose plus aminophyllin far exceeded that of the malnourished rats. Thus the impairment of insulin release demonstrated in the malnourished rats cannot be ascribed to a 'functional immaturity' of the pancreas.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D008112 Liver Glycogen Glycogen stored in the liver. (Dorland, 28th ed) Hepatic Glycogen,Glycogen, Hepatic,Glycogen, Liver
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D010179 Pancreas A nodular organ in the ABDOMEN that contains a mixture of ENDOCRINE GLANDS and EXOCRINE GLANDS. The small endocrine portion consists of the ISLETS OF LANGERHANS secreting a number of hormones into the blood stream. The large exocrine portion (EXOCRINE PANCREAS) is a compound acinar gland that secretes several digestive enzymes into the pancreatic ductal system that empties into the DUODENUM.
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D011502 Protein-Energy Malnutrition The lack of sufficient energy or protein to meet the body's metabolic demands, as a result of either an inadequate dietary intake of protein, intake of poor quality dietary protein, increased demands due to disease, or increased nutrient losses. Marasmus,Protein-Calorie Malnutrition,Malnutrition, Protein-Calorie,Malnutrition, Protein-Energy,Malnutritions, Protein-Energy,Protein Calorie Malnutrition,Protein Energy Malnutrition
D001786 Blood Glucose Glucose in blood. Blood Sugar,Glucose, Blood,Sugar, Blood
D004195 Disease Models, Animal Naturally-occurring or experimentally-induced animal diseases with pathological processes analogous to human diseases. Animal Disease Model,Animal Disease Models,Disease Model, Animal
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D005951 Glucose Tolerance Test A test to determine the ability of an individual to maintain HOMEOSTASIS of BLOOD GLUCOSE. It includes measuring blood glucose levels in a fasting state, and at prescribed intervals before and after oral glucose intake (75 or 100 g) or intravenous infusion (0.5 g/kg). Intravenous Glucose Tolerance,Intravenous Glucose Tolerance Test,OGTT,Oral Glucose Tolerance,Oral Glucose Tolerance Test,Glucose Tolerance Tests,Glucose Tolerance, Oral

Related Publications

C Weinkove, and E A Weinkove, and B L Pimstone
May 1972, The British journal of nutrition,
C Weinkove, and E A Weinkove, and B L Pimstone
September 1976, Nutrition reviews,
C Weinkove, and E A Weinkove, and B L Pimstone
July 1998, Molecular and cellular endocrinology,
C Weinkove, and E A Weinkove, and B L Pimstone
October 1991, Journal of endocrinological investigation,
C Weinkove, and E A Weinkove, and B L Pimstone
October 1996, Nihon rinsho. Japanese journal of clinical medicine,
C Weinkove, and E A Weinkove, and B L Pimstone
June 1997, The Journal of endocrinology,
C Weinkove, and E A Weinkove, and B L Pimstone
December 1977, The Proceedings of the Nutrition Society,
C Weinkove, and E A Weinkove, and B L Pimstone
May 2016, Molecular medicine (Cambridge, Mass.),
C Weinkove, and E A Weinkove, and B L Pimstone
December 2018, Physiological reports,
Copied contents to your clipboard!