Lipid-binding proteins: a family of fatty acid and retinoid transport proteins. 1994

L Banaszak, and N Winter, and Z Xu, and D A Bernlohr, and S Cowan, and T A Jones
Department of Biochemistry, University of Minnesota, Minneapolis 55455.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009363 Neoplasm Proteins Proteins whose abnormal expression (gain or loss) are associated with the development, growth, or progression of NEOPLASMS. Some neoplasm proteins are tumor antigens (ANTIGENS, NEOPLASM), i.e. they induce an immune reaction to their tumor. Many neoplasm proteins have been characterized and are used as tumor markers (BIOMARKERS, TUMOR) when they are detectable in cells and body fluids as monitors for the presence or growth of tumors. Abnormal expression of ONCOGENE PROTEINS is involved in neoplastic transformation, whereas the loss of expression of TUMOR SUPPRESSOR PROTEINS is involved with the loss of growth control and progression of the neoplasm. Proteins, Neoplasm
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D005227 Fatty Acids Organic, monobasic acids derived from hydrocarbons by the equivalent of oxidation of a methyl group to an alcohol, aldehyde, and then acid. Fatty acids are saturated and unsaturated (FATTY ACIDS, UNSATURATED). (Grant & Hackh's Chemical Dictionary, 5th ed) Aliphatic Acid,Esterified Fatty Acid,Fatty Acid,Fatty Acids, Esterified,Fatty Acids, Saturated,Saturated Fatty Acid,Aliphatic Acids,Acid, Aliphatic,Acid, Esterified Fatty,Acid, Saturated Fatty,Esterified Fatty Acids,Fatty Acid, Esterified,Fatty Acid, Saturated,Saturated Fatty Acids
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000071438 Fatty Acid-Binding Protein 7 A fatty acid-binding protein expressed by ASTROCYTES during CENTRAL NERVOUS SYSTEM development, and by MALIGNANT GLIOMA cells. It is also expressed by ASTROCYTES in response to injury or ISCHEMIA, and may function in repair of the MYELIN SHEATH. Brain Lipid-Binding Protein,Fatty Acid-Binding Protein, Brain,Mammary-Derived Growth Inhibitor Related Protein,Brain Lipid Binding Protein,Fatty Acid Binding Protein 7,Fatty Acid Binding Protein, Brain,Lipid-Binding Protein, Brain,Mammary Derived Growth Inhibitor Related Protein
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012176 Retinoids A group of tetraterpenes, with four terpene units joined head-to-tail. Biologically active members of this class are used clinically in the treatment of severe cystic ACNE; PSORIASIS; and other disorders of keratinization. Retinoid
D050556 Fatty Acid-Binding Proteins Intracellular proteins that reversibly bind hydrophobic ligands including: saturated and unsaturated FATTY ACIDS; EICOSANOIDS; and RETINOIDS. They are considered a highly conserved and ubiquitously expressed family of proteins that may play a role in the metabolism of LIPIDS. Fatty Acid-Binding Protein,Adipocyte Lipid Binding Protein,Adipocyte-Specific Fatty Acid-Binding Protein,Brain-Type Fatty Acid-Binding Protein,Cytosolic Lipid-Binding Proteins,Fatty Acid-Binding Protein, Cardiac Myocyte,Fatty Acid-Binding Protein, Myocardial,Fatty Acid-Binding Proteins, Adipocyte-Specific,Fatty Acid-Binding Proteins, Brain-Specific,Fatty Acid-Binding Proteins, Cytosolic-Specific,Fatty Acid-Binding Proteins, Intestinal-Specific,Fatty Acid-Binding Proteins, Liver-Specific,Fatty Acid-Binding Proteins, Myocardial-Specific,Fatty Acid-Binding Proteins, Plasma-Membrane Specific,Intestinal Fatty Acid-Binding Protein,Liver Fatty Acid-Binding Protein,Myocardial Fatty Acid-Binding Protein,Plasma Membrane Fatty Acid-Binding Protein,Acid-Binding Protein, Fatty,Adipocyte Specific Fatty Acid Binding Protein,Brain Type Fatty Acid Binding Protein,Cytosolic Lipid Binding Proteins,Fatty Acid Binding Protein,Fatty Acid Binding Protein, Cardiac Myocyte,Fatty Acid Binding Protein, Myocardial,Fatty Acid Binding Proteins,Fatty Acid Binding Proteins, Adipocyte Specific,Fatty Acid Binding Proteins, Brain Specific,Fatty Acid Binding Proteins, Cytosolic Specific,Fatty Acid Binding Proteins, Intestinal Specific,Fatty Acid Binding Proteins, Liver Specific,Fatty Acid Binding Proteins, Myocardial Specific,Fatty Acid Binding Proteins, Plasma Membrane Specific,Intestinal Fatty Acid Binding Protein,Lipid-Binding Proteins, Cytosolic,Liver Fatty Acid Binding Protein,Myocardial Fatty Acid Binding Protein,Plasma Membrane Fatty Acid Binding Protein,Protein, Fatty Acid-Binding

Related Publications

L Banaszak, and N Winter, and Z Xu, and D A Bernlohr, and S Cowan, and T A Jones
March 1995, The Proceedings of the Nutrition Society,
L Banaszak, and N Winter, and Z Xu, and D A Bernlohr, and S Cowan, and T A Jones
June 2000, Biochimica et biophysica acta,
L Banaszak, and N Winter, and Z Xu, and D A Bernlohr, and S Cowan, and T A Jones
June 1987, Biochemical Society transactions,
L Banaszak, and N Winter, and Z Xu, and D A Bernlohr, and S Cowan, and T A Jones
August 2001, Trends in endocrinology and metabolism: TEM,
L Banaszak, and N Winter, and Z Xu, and D A Bernlohr, and S Cowan, and T A Jones
February 1989, FEBS letters,
L Banaszak, and N Winter, and Z Xu, and D A Bernlohr, and S Cowan, and T A Jones
December 2009, The Journal of biological chemistry,
L Banaszak, and N Winter, and Z Xu, and D A Bernlohr, and S Cowan, and T A Jones
July 1999, Journal of lipid research,
L Banaszak, and N Winter, and Z Xu, and D A Bernlohr, and S Cowan, and T A Jones
August 2023, Annual review of nutrition,
L Banaszak, and N Winter, and Z Xu, and D A Bernlohr, and S Cowan, and T A Jones
January 1990, Molecular and cellular biochemistry,
L Banaszak, and N Winter, and Z Xu, and D A Bernlohr, and S Cowan, and T A Jones
June 2007, Current opinion in lipidology,
Copied contents to your clipboard!