Recombinational-type transfer of viral DNA during bacteriophage 2C replication in Bacillus subtilis. 1976

P Hoet, and G Fraselle, and C Cocito

The Bacillus subtilis phage 2C contains one molecule of double-stranded DNA of about 100 x 10(6) daltons in which thymine is replaced by hydroxymethyluracil; the two strands have different buoyant densities. Parental DNA, labeled with either [3H]uracil of [32P]phosphate, was quite effectively transferred to offspring phage, and the efficiency of transfer was the same for the two strands. Labeled nucleotide compositions of the H and L strands from parental and progeny virions were very close. These data exclude a degradation of the infecting DNA and reutilization of nucleotides. Upon infection of light unlabeled cells with heavy radioactive viruses, no DNA with either heavy or hybrid density was extracted from offspring phage. Instead, an heterogeneous population of DNA molecules of densities ranging from that of almost hybrid to that of fully light species was obtained. Shear degradation of such progeny DNA to fragments of decreasing molecular weight produced a progressive shift to the density of hybrid molecules. Denaturation of sheared DNA segments caused the appearance of labeled and heavy single-stranded segments. These findings indicate that 2C DNA replicates semiconservatively and then undergoes extensive genetic recombination with newly formed viral DNA molecules within the vegatative pool, thus mimicking a dispersive transfer of the infecting viral genome. The pieces of transferred parental DNA have an average size of 10 x 10(6) daltons.

UI MeSH Term Description Entries
D009711 Nucleotides The monomeric units from which DNA or RNA polymers are constructed. They consist of a purine or pyrimidine base, a pentose sugar, and a phosphate group. (From King & Stansfield, A Dictionary of Genetics, 4th ed) Nucleotide
D011995 Recombination, Genetic Production of new arrangements of DNA by various mechanisms such as assortment and segregation, CROSSING OVER; GENE CONVERSION; GENETIC TRANSFORMATION; GENETIC CONJUGATION; GENETIC TRANSDUCTION; or mixed infection of viruses. Genetic Recombination,Recombination,Genetic Recombinations,Recombinations,Recombinations, Genetic
D004261 DNA Replication The process by which a DNA molecule is duplicated. Autonomous Replication,Replication, Autonomous,Autonomous Replications,DNA Replications,Replication, DNA,Replications, Autonomous,Replications, DNA
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D001412 Bacillus subtilis A species of gram-positive bacteria that is a common soil and water saprophyte. Natto Bacteria,Bacillus subtilis (natto),Bacillus subtilis subsp. natto,Bacillus subtilis var. natto
D001435 Bacteriophages Viruses whose hosts are bacterial cells. Phages,Bacteriophage,Phage
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription
D014498 Uracil One of four nucleotide bases in the nucleic acid RNA.
D014779 Virus Replication The process of intracellular viral multiplication, consisting of the synthesis of PROTEINS; NUCLEIC ACIDS; and sometimes LIPIDS, and their assembly into a new infectious particle. Viral Replication,Replication, Viral,Replication, Virus,Replications, Viral,Replications, Virus,Viral Replications,Virus Replications

Related Publications

P Hoet, and G Fraselle, and C Cocito
September 2001, Journal of bacteriology,
P Hoet, and G Fraselle, and C Cocito
January 1972, Molecular & general genetics : MGG,
P Hoet, and G Fraselle, and C Cocito
October 1985, European journal of biochemistry,
P Hoet, and G Fraselle, and C Cocito
July 1991, Journal of bacteriology,
P Hoet, and G Fraselle, and C Cocito
January 1969, Journal of virology,
P Hoet, and G Fraselle, and C Cocito
February 1975, Journal of virology,
P Hoet, and G Fraselle, and C Cocito
July 1996, Journal of molecular biology,
P Hoet, and G Fraselle, and C Cocito
June 2004, Bioscience, biotechnology, and biochemistry,
Copied contents to your clipboard!