Nutritional regulation of the insulin-like growth factors. 1994

J P Thissen, and J M Ketelslegers, and L E Underwood
Division of Pediatric Endocrinology, University of North Carolina, Chapel Hill 27599.

Nutrition is one of the main regulators of circulating IGF-I. In humans, serum IGF-I concentrations are markedly lowered by energy and/or protein deprivation. Both energy and proteins are critical in the regulation of serum IGF-I concentrations. Indeed, after fasting, optimal intake of both energy and protein is necessary for the rapid restoration of circulating IGF-I. We believe, however, that in adult humans energy may be somewhat more important than protein in this regard. While the lowest protein intake is able to increase IGF-I in the presence of adequate energy, there is a threshold energy requirement below which optimal protein intake fails to raise IGF-I after fasting. When energy intake is severely reduced, the carbohydrate content of the diet is a major determinant of responsiveness of IGF-I to GH. The essential amino acid content of the diet is also critical for the optimal restoration of IGF-I after fasting, when protein intake is reduced. The exquisite sensitivity of circulating IGF-I to nutrients, the nycthemeral stability of its concentrations and its relative short half-life constitute the basis for its use as a marker of both nutritional status and adequacy of nutritional rehabilitation. For these indications, IGF-I measurement is more sensitive and more specific than measurement of the other nutrient-related serum proteins (albumin, prealbumin, transferrin, retinol-binding protein). Animal models have been developed to investigate the mechanisms responsible for the nutritional regulation of IGF-I. There is no doubt that many mechanisms are involved (Fig. 12). Decline of serum IGF-I in dietary restriction is independent of the diet-induced alterations in pituitary GH secretion. The role of the liver GH receptors is dependent on the severity of the nutritional insult. In severe dietary restriction (fasting), a marked decrease of the number of somatogenic receptors supports the role of a receptor defect in the decline of circulating IGF-I. In contrast, in less severe forms of dietary restriction (protein restriction), the decline of IGF-I results from a postreceptor defect in the GH action at the hepatic level. Nutritional deprivation decreases hepatic IGF-I production by diminishing IGF-I gene expression. Decline in IGF-I gene expression is mainly caused by nutrient deficiency and less importantly by the nutritionally induced hormonal changes (insulin and T3). Diet restriction also increases the clearance and degradation of serum IGF-I through changes in the levels of circulating IGFBPs.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D007031 Hypothalamus Ventral part of the DIENCEPHALON extending from the region of the OPTIC CHIASM to the caudal border of the MAMMILLARY BODIES and forming the inferior and lateral walls of the THIRD VENTRICLE. Lamina Terminalis,Preoptico-Hypothalamic Area,Area, Preoptico-Hypothalamic,Areas, Preoptico-Hypothalamic,Preoptico Hypothalamic Area,Preoptico-Hypothalamic Areas
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D007334 Insulin-Like Growth Factor I A well-characterized basic peptide believed to be secreted by the liver and to circulate in the blood. It has growth-regulating, insulin-like, and mitogenic activities. This growth factor has a major, but not absolute, dependence on GROWTH HORMONE. It is believed to be mainly active in adults in contrast to INSULIN-LIKE GROWTH FACTOR II, which is a major fetal growth factor. IGF-I,Somatomedin C,IGF-1,IGF-I-SmC,Insulin Like Growth Factor I,Insulin-Like Somatomedin Peptide I,Insulin Like Somatomedin Peptide I
D007335 Insulin-Like Growth Factor II A well-characterized neutral peptide believed to be secreted by the LIVER and to circulate in the BLOOD. It has growth-regulating, insulin-like and mitogenic activities. The growth factor has a major, but not absolute, dependence on SOMATOTROPIN. It is believed to be a major fetal growth factor in contrast to INSULIN-LIKE GROWTH FACTOR I, which is a major growth factor in adults. IGF-II,Multiplication-Stimulating Activity,Somatomedin MSA,IGF-2,Insulin Like Growth Factor II,Insulin-Like Somatomedin Peptide II,Multiplication-Stimulating Factor,Somatomedin A,Factor, Multiplication-Stimulating,Insulin Like Somatomedin Peptide II,Multiplication Stimulating Activity,Multiplication Stimulating Factor
D009747 Nutritional Physiological Phenomena The processes and properties of living organisms by which they take in and balance the use of nutritive materials for energy, heat production, or building material for the growth, maintenance, or repair of tissues and the nutritive properties of FOOD. Nutrition Physiological Phenomena,Nutrition Physiology,Nutrition Processes,Nutritional Physiology Phenomena,Nutrition Phenomena,Nutrition Physiological Concepts,Nutrition Physiological Phenomenon,Nutrition Process,Nutritional Phenomena,Nutritional Physiological Phenomenon,Nutritional Physiology,Nutritional Physiology Concepts,Nutritional Physiology Phenomenon,Nutritional Process,Nutritional Processes,Concept, Nutrition Physiological,Concept, Nutritional Physiology,Concepts, Nutrition Physiological,Concepts, Nutritional Physiology,Nutrition Physiological Concept,Nutritional Physiology Concept,Phenomena, Nutrition,Phenomena, Nutrition Physiological,Phenomena, Nutritional,Phenomena, Nutritional Physiological,Phenomena, Nutritional Physiology,Phenomenon, Nutrition Physiological,Phenomenon, Nutritional Physiological,Phenomenon, Nutritional Physiology,Physiological Concept, Nutrition,Physiological Concepts, Nutrition,Physiological Phenomena, Nutrition,Physiological Phenomena, Nutritional,Physiological Phenomenon, Nutrition,Physiological Phenomenon, Nutritional,Physiology Concept, Nutritional,Physiology Concepts, Nutritional,Physiology Phenomena, Nutritional,Physiology Phenomenon, Nutritional,Physiology, Nutrition,Physiology, Nutritional,Process, Nutrition,Process, Nutritional,Processes, Nutrition,Processes, Nutritional
D009752 Nutritional Status State of the body in relation to the consumption and utilization of nutrients. Nutrition Status,Status, Nutrition,Status, Nutritional
D004032 Diet Regular course of eating and drinking adopted by a person or animal. Diets
D005215 Fasting Abstaining from FOOD. Hunger Strike,Hunger Strikes,Strike, Hunger,Strikes, Hunger
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

J P Thissen, and J M Ketelslegers, and L E Underwood
February 1998, The Journal of nutrition,
J P Thissen, and J M Ketelslegers, and L E Underwood
September 1992, Journal of animal science,
J P Thissen, and J M Ketelslegers, and L E Underwood
January 1994, Breast cancer research and treatment,
J P Thissen, and J M Ketelslegers, and L E Underwood
December 1990, The Journal of steroid biochemistry and molecular biology,
J P Thissen, and J M Ketelslegers, and L E Underwood
May 1998, Annals of the New York Academy of Sciences,
J P Thissen, and J M Ketelslegers, and L E Underwood
February 1997, Endocrine journal,
J P Thissen, and J M Ketelslegers, and L E Underwood
May 1993, Annals of the New York Academy of Sciences,
J P Thissen, and J M Ketelslegers, and L E Underwood
December 1990, The Journal of steroid biochemistry and molecular biology,
J P Thissen, and J M Ketelslegers, and L E Underwood
February 1998, The Journal of nutrition,
J P Thissen, and J M Ketelslegers, and L E Underwood
September 1994, Contraception, fertilite, sexualite (1992),
Copied contents to your clipboard!