Self-assembly into fibrils of collagen II by enzymic cleavage of recombinant procollagen II. Lag period, critical concentration, and morphology of fibrils differ from collagen I. 1994

A Fertala, and A L Sieron, and Y Hojima, and A Ganguly, and D J Prockop
Department of Biochemistry and Molecular Biology, Jefferson Institute of Molecular Medicine, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107.

A recently developed recombinant system for synthesis of human procollagen II by stably transfected host cells was used to prepare adequate amounts of protein to study the self-assembly of collagen II into fibrils. The procollagen II was cleaved to pCcollagen II by procollagen N-proteinase (EC 3.4.24.14), the pCcollagen II was chromatographically purified, and the pCcollagen II was then used as a substrate to generate collagen II fibrils by cleavage with procollagen C-proteinase. The kinetics for assembly of collagen II fibrils were similar to those observed previously for the self-assembly of collagen I in that a distinct lag phase was observed followed by a sigmoidal propagation phase. However, under the same experimental conditions, the lag time for assembly of collagen II fibrils was 5-6-fold longer, and the propagation rate for collagen II fibrils was about 30-fold lower than for collagen I fibrils. The relatively long lag time for the assembly of collagen II into fibrils made it possible to demonstrate that most of the conversion of pCcollagen II to collagen II occurred in the solution phase. The critical concentration at 37 degrees C for collagen II was about 50-fold greater than the critical concentration for collagen I. The Gibbs free energy change for the assembly of collagen II into fibrils was -40 kJ/mol, a value that was about 14 kJ/mol less than the free energy change for collagen I and about the same as the free energy change for the homotrimer of collagen I. Dark-field light microscopy and negative-staining electron microscopy demonstrated that the collagen II fibrils were thin and formed network-like structures. The results demonstrated, therefore, that the structural information of the monomer is sufficient to explain the characteristically small diameters and arcade-like geometry of collagen II fibrils found in cartilage and other tissues.

UI MeSH Term Description Entries
D007680 Kidney Neoplasms Tumors or cancers of the KIDNEY. Cancer of Kidney,Kidney Cancer,Renal Cancer,Cancer of the Kidney,Neoplasms, Kidney,Renal Neoplasms,Cancer, Kidney,Cancer, Renal,Cancers, Kidney,Cancers, Renal,Kidney Cancers,Kidney Neoplasm,Neoplasm, Kidney,Neoplasm, Renal,Neoplasms, Renal,Renal Cancers,Renal Neoplasm
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D011347 Procollagen A biosynthetic precursor of collagen containing additional amino acid sequences at the amino-terminal and carboxyl-terminal ends of the polypeptide chains. Protocollagen,Procollagen Type M
D011348 Procollagen N-Endopeptidase An extracellular endopeptidase which excises a block of peptides at the amino terminal, nonhelical region of the procollagen molecule with the formation of collagen. Absence or deficiency of the enzyme causes accumulation of procollagen which results in the inherited connective tissue disorder--dermatosparaxis. EC 3.4.24.14. Procollagen Peptidase,Procollagen N-Proteinase,Procollagen N Endopeptidase,Procollagen N Proteinase
D011499 Protein Processing, Post-Translational Any of various enzymatically catalyzed post-translational modifications of PEPTIDES or PROTEINS in the cell of origin. These modifications include carboxylation; HYDROXYLATION; ACETYLATION; PHOSPHORYLATION; METHYLATION; GLYCOSYLATION; ubiquitination; oxidation; proteolysis; and crosslinking and result in changes in molecular weight and electrophoretic motility. Amino Acid Modification, Post-Translational,Post-Translational Modification,Post-Translational Protein Modification,Posttranslational Modification,Protein Modification, Post-Translational,Amino Acid Modification, Posttranslational,Post-Translational Amino Acid Modification,Post-Translational Modifications,Post-Translational Protein Processing,Posttranslational Amino Acid Modification,Posttranslational Modifications,Posttranslational Protein Processing,Protein Processing, Post Translational,Protein Processing, Posttranslational,Amino Acid Modification, Post Translational,Modification, Post-Translational,Modification, Post-Translational Protein,Modification, Posttranslational,Modifications, Post-Translational,Modifications, Post-Translational Protein,Modifications, Posttranslational,Post Translational Amino Acid Modification,Post Translational Modification,Post Translational Modifications,Post Translational Protein Modification,Post Translational Protein Processing,Post-Translational Protein Modifications,Processing, Post-Translational Protein,Processing, Posttranslational Protein,Protein Modification, Post Translational,Protein Modifications, Post-Translational
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D003094 Collagen A polypeptide substance comprising about one third of the total protein in mammalian organisms. It is the main constituent of SKIN; CONNECTIVE TISSUE; and the organic substance of bones (BONE AND BONES) and teeth (TOOTH). Avicon,Avitene,Collagen Felt,Collagen Fleece,Collagenfleece,Collastat,Dermodress,Microfibril Collagen Hemostat,Pangen,Zyderm,alpha-Collagen,Collagen Hemostat, Microfibril,alpha Collagen
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

A Fertala, and A L Sieron, and Y Hojima, and A Ganguly, and D J Prockop
August 1984, The Journal of biological chemistry,
A Fertala, and A L Sieron, and Y Hojima, and A Ganguly, and D J Prockop
August 1992, Matrix (Stuttgart, Germany),
A Fertala, and A L Sieron, and Y Hojima, and A Ganguly, and D J Prockop
July 1982, The Journal of biological chemistry,
A Fertala, and A L Sieron, and Y Hojima, and A Ganguly, and D J Prockop
January 1967, Journal. Royal Microscopical Society (Great Britain),
A Fertala, and A L Sieron, and Y Hojima, and A Ganguly, and D J Prockop
February 1982, Cell,
A Fertala, and A L Sieron, and Y Hojima, and A Ganguly, and D J Prockop
April 2019, The European physical journal. E, Soft matter,
A Fertala, and A L Sieron, and Y Hojima, and A Ganguly, and D J Prockop
January 2008, Biomaterials,
Copied contents to your clipboard!