Distribution of cholinergic and dopaminergic receptors in rainbow trout pineal gland. 1994

M Samejima, and H K Happe, and L C Murrin, and R F Pfeiffer, and M Ebadi
Department of Pharmacology, University of Nebraska College of Medicine, Omaha 68198-6260.

The involvement of multiple receptors in modulating the function of the pineal gland was investigated by searching for dopaminergic and cholinergic receptors in trout pineal gland. Dopamine D1 and D2 receptors were measured using [3H]SCH23390 and [3H]spiperone, respectively. Muscarinic and nicotinic cholinergic receptors were measured using quinuclidinyl benzilate ([3H]QNB) and [3H]methylcarbamyl choline, respectively. High-affinity choline uptake sites were measured using [3H]hemicholinium-3. The distribution of dopaminergic receptors varied throughout the pineal gland in that the density of D2 receptors, which was higher than that of D1 receptors, was most abundant in the distal region, exhibiting a value of 112 +/- 17 fmol/mg tissue. The distribution of both muscarinic and nicotinic receptors was uniform throughout the pineal gland. However, the highest value for the high-affinity choline transporter (106 +/- 17 fmol/mg tissue) occurred in the proximal portion of the trout pineal gland. The results of these studies indicate that the pineal gland should not be viewed as a homogeneous tissue possessing identical density of various receptors. Furthermore, these results, along with previous data, are interpreted to suggest that different regions of pineal gland may indeed possess unique functions.

UI MeSH Term Description Entries
D010870 Pineal Gland A light-sensitive neuroendocrine organ attached to the roof of the THIRD VENTRICLE of the brain. The pineal gland secretes MELATONIN, other BIOGENIC AMINES and NEUROPEPTIDES. Epiphysis Cerebri,Pineal Body,Corpus Pineale,Gland, Pineal,Pineal Bodies,Pineal Glands
D011950 Receptors, Cholinergic Cell surface proteins that bind acetylcholine with high affinity and trigger intracellular changes influencing the behavior of cells. Cholinergic receptors are divided into two major classes, muscarinic and nicotinic, based originally on their affinity for nicotine and muscarine. Each group is further subdivided based on pharmacology, location, mode of action, and/or molecular biology. ACh Receptor,Acetylcholine Receptor,Acetylcholine Receptors,Cholinergic Receptor,Cholinergic Receptors,Cholinoceptive Sites,Cholinoceptor,Cholinoceptors,Receptors, Acetylcholine,ACh Receptors,Receptors, ACh,Receptor, ACh,Receptor, Acetylcholine,Receptor, Cholinergic,Sites, Cholinoceptive
D011954 Receptors, Dopamine Cell-surface proteins that bind dopamine with high affinity and trigger intracellular changes influencing the behavior of cells. Dopamine Receptors,Dopamine Receptor,Receptor, Dopamine
D011976 Receptors, Muscarinic One of the two major classes of cholinergic receptors. Muscarinic receptors were originally defined by their preference for MUSCARINE over NICOTINE. There are several subtypes (usually M1, M2, M3....) that are characterized by their cellular actions, pharmacology, and molecular biology. Muscarinic Acetylcholine Receptors,Muscarinic Receptors,Muscarinic Acetylcholine Receptor,Muscarinic Receptor,Acetylcholine Receptor, Muscarinic,Acetylcholine Receptors, Muscarinic,Receptor, Muscarinic,Receptor, Muscarinic Acetylcholine,Receptors, Muscarinic Acetylcholine
D011978 Receptors, Nicotinic One of the two major classes of cholinergic receptors. Nicotinic receptors were originally distinguished by their preference for NICOTINE over MUSCARINE. They are generally divided into muscle-type and neuronal-type (previously ganglionic) based on pharmacology, and subunit composition of the receptors. Nicotinic Acetylcholine Receptors,Nicotinic Receptors,Nicotinic Acetylcholine Receptor,Nicotinic Receptor,Acetylcholine Receptor, Nicotinic,Acetylcholine Receptors, Nicotinic,Receptor, Nicotinic,Receptor, Nicotinic Acetylcholine,Receptors, Nicotinic Acetylcholine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D017686 Oncorhynchus mykiss A large stout-bodied, sometimes anadromous, TROUT found in still and flowing waters of the Pacific coast from southern California to Alaska. It has a greenish back, a whitish belly, and pink, red, or lavender stripes on the sides, with usually a sprinkling of black dots. It is highly regarded as a sport and food fish. Its former name was Salmo gairdneri. The sea-run rainbow trouts are often called steelheads. Redband trouts refer to interior populations of rainbows. Salmo gairdneri,Steelhead,Trout, Rainbow,Trout, Redband,Rainbow Trout,Redband Trout,Steelheads

Related Publications

M Samejima, and H K Happe, and L C Murrin, and R F Pfeiffer, and M Ebadi
September 2001, Journal of pineal research,
M Samejima, and H K Happe, and L C Murrin, and R F Pfeiffer, and M Ebadi
September 1996, Journal of pineal research,
M Samejima, and H K Happe, and L C Murrin, and R F Pfeiffer, and M Ebadi
November 1991, Journal of neurochemistry,
M Samejima, and H K Happe, and L C Murrin, and R F Pfeiffer, and M Ebadi
October 1992, Journal of pineal research,
M Samejima, and H K Happe, and L C Murrin, and R F Pfeiffer, and M Ebadi
June 1993, Neuroscience letters,
M Samejima, and H K Happe, and L C Murrin, and R F Pfeiffer, and M Ebadi
January 1980, Cell and tissue research,
M Samejima, and H K Happe, and L C Murrin, and R F Pfeiffer, and M Ebadi
January 1989, Journal of neural transmission,
M Samejima, and H K Happe, and L C Murrin, and R F Pfeiffer, and M Ebadi
October 1985, American journal of veterinary research,
M Samejima, and H K Happe, and L C Murrin, and R F Pfeiffer, and M Ebadi
April 1995, Cellular and molecular neurobiology,
M Samejima, and H K Happe, and L C Murrin, and R F Pfeiffer, and M Ebadi
July 1993, Vision research,
Copied contents to your clipboard!