Volume regulation in cultured cells derived from human retinal pigment epithelium. 1994

B G Kennedy
Department of Physiology, Northwest Center for Medical Education, Indiana University School of Medicine, Gary 46408.

To characterize volume regulatory mechanisms, unidirectional Rb+ efflux and influx, unidirectional Cl- influx, and cell volume were measured in cultured human retinal pigment epithelium (HRPE). The HRPE was found to be capable of both regulatory volume increase (RVI), in response to a hypertonic challenge, and regulatory volume decrease (RVD), in response to a hypotonic challenge. Bumetanide-sensitive Rb+ influx increased almost threefold on incubation in a hypertonic (390 mosmol/kgH2O) medium. Bumetanide-insensitive Rb+ influx was activated by hypotonic (190 mosmol/kgH2O) challenge as well as by treatment with N-ethylmaleimide (NEM). Exposure to hypotonic media also activated unidirectional Cl- influx and unidirectional Rb+ efflux. Both the RVD and hypotonically activated Rb+ efflux were inhibited by the K(+)-channel blocker barium. On the other hand, hypotonically activated Rb+ influx was increased by barium treatment. In sum, the HRPE exhibits volume-sensitive transport mechanisms over a range of volumes from 190 to 390 mosmol/kgH2O. Cultured HRPE possess hypertonically activated Na-K-Cl cotransport, hypotonically activated K-Cl cotransport, and a barium-inhibitable hypotonically activated K+ efflux pathway.

UI MeSH Term Description Entries
D007038 Hypotonic Solutions Solutions that have a lesser osmotic pressure than a reference solution such as blood, plasma, or interstitial fluid. Solutions, Hypotonic
D008027 Light That portion of the electromagnetic spectrum in the visible, ultraviolet, and infrared range. Light, Visible,Photoradiation,Radiation, Visible,Visible Radiation,Photoradiations,Radiations, Visible,Visible Light,Visible Radiations
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D010857 Pigment Epithelium of Eye The layer of pigment-containing epithelial cells in the RETINA; the CILIARY BODY; and the IRIS in the eye. Eye Pigment Epithelium
D002034 Bumetanide A sulfamyl diuretic. Bumedyl,Bumethanide,Bumex,Burinex,Drenural,Fordiuran,Miccil,PF-1593,PF 1593,PF1593
D002712 Chlorides Inorganic compounds derived from hydrochloric acid that contain the Cl- ion. Chloride,Chloride Ion Level,Ion Level, Chloride,Level, Chloride Ion
D003470 Culture Media Any liquid or solid preparation made specifically for the growth, storage, or transport of microorganisms or other types of cells. The variety of media that exist allow for the culturing of specific microorganisms and cell types, such as differential media, selective media, test media, and defined media. Solid media consist of liquid media that have been solidified with an agent such as AGAR or GELATIN. Media, Culture
D005033 Ethylmaleimide A sulfhydryl reagent that is widely used in experimental biochemical studies. N-Ethylmaleimide,N Ethylmaleimide
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic

Related Publications

B G Kennedy
May 2015, Proceedings of the National Academy of Sciences of the United States of America,
B G Kennedy
July 2009, Journal of ophthalmic & vision research,
B G Kennedy
March 1988, The Biochemical journal,
B G Kennedy
January 1983, Nippon Ganka Gakkai zasshi,
B G Kennedy
May 1986, Nippon Ganka Gakkai zasshi,
B G Kennedy
April 1996, Experimental eye research,
Copied contents to your clipboard!