Growth and differentiation of tracheal epithelial progenitor cells. 1994

J Y Liu, and P Nettesheim, and S H Randell
Laboratory of Pulmonary Pathobiology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709.

The purpose of these studies was to determine whether both basal and secretory rat tracheal epithelial (RTE) cells served as multipotent epithelial progenitors and whether both cell types gave rise to a similar "poorly differentiated" cell during the early phase of epithelial regeneration in denuded tracheal grafts. Griffonia simplicifolia I (GSI) lectin and flow cytometry were used for cell sorting. More than 98% of GSI-positive cells expressed plasma membrane alpha 1-3 terminal galactose (Gal), and 95% contained keratin 14 (K14), phenotypic markers for basal cells; < 1% were secretory or ciliated cells. Less than 2% of the GSI-negative cells expressed Gal or K14, but this fraction contained 16% ciliated cells and 54-79% secretory cells, dependent on whether periodic acid-Schiff staining or binding of an anti-secretory cell monoclonal antibody (RTE 12) was used as the criterion. Equal numbers of viable cells from either fraction were inoculated into denuded tracheal grafts, which were studied on days 1-14. At 24 h, greater numbers of GSI-negative than -positive cells were found attached to the graft wall; the keratin staining pattern of the attached cells was similar to that of the parent cell populations, but monoclonal antibody-detectable secretory and ciliated cell epitopes, originally present in the GSI-negative fraction, were lost. 5-Bromo-2'-deoxyuridine uptake was not seen at 24 h, but by 48 h all epithelial cells from both fractions entered the cell cycle. From 48 to 96 h, cells derived from either fraction were ultrastructurally indistinguishable; they were poorly differentiated and highly proliferative, and all expressed Gal and K14. A mature epithelium evolved from the poorly differentiated cells in both sets of grafts, but secretory and ciliated cells appeared earlier in grafts inoculated with GSI-negative cells. The results strongly suggest that in this model of tracheal epithelial regeneration both basal and secretory cells "dedifferentiated" into a similar highly proliferative phenotype from which a mucociliary epithelium "redifferentiated."

UI MeSH Term Description Entries
D008297 Male Males
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009092 Mucous Membrane An EPITHELIUM with MUCUS-secreting cells, such as GOBLET CELLS. It forms the lining of many body cavities, such as the DIGESTIVE TRACT, the RESPIRATORY TRACT, and the reproductive tract. Mucosa, rich in blood and lymph vessels, comprises an inner epithelium, a middle layer (lamina propria) of loose CONNECTIVE TISSUE, and an outer layer (muscularis mucosae) of SMOOTH MUSCLE CELLS that separates the mucosa from submucosa. Lamina Propria,Mucosa,Mucosal Tissue,Muscularis Mucosae,Mucous Membranes,Membrane, Mucous,Membranes, Mucous,Mucosae, Muscularis,Mucosal Tissues,Propria, Lamina,Tissue, Mucosal,Tissues, Mucosal
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D011916 Rats, Inbred F344 An inbred strain of rat that is used for general BIOMEDICAL RESEARCH purposes. Fischer Rats,Rats, Inbred CDF,Rats, Inbred Fischer 344,Rats, F344,Rats, Inbred Fisher 344,CDF Rat, Inbred,CDF Rats, Inbred,F344 Rat,F344 Rat, Inbred,F344 Rats,F344 Rats, Inbred,Inbred CDF Rat,Inbred CDF Rats,Inbred F344 Rat,Inbred F344 Rats,Rat, F344,Rat, Inbred CDF,Rat, Inbred F344,Rats, Fischer
D012038 Regeneration The physiological renewal, repair, or replacement of tissue. Endogenous Regeneration,Regeneration, Endogenous,Regenerations
D001973 Bromodeoxyuridine A nucleoside that substitutes for thymidine in DNA and thus acts as an antimetabolite. It causes breaks in chromosomes and has been proposed as an antiviral and antineoplastic agent. It has been given orphan drug status for use in the treatment of primary brain tumors. BUdR,BrdU,Bromouracil Deoxyriboside,Broxuridine,5-Bromo-2'-deoxyuridine,5-Bromodeoxyuridine,NSC-38297,5 Bromo 2' deoxyuridine,5 Bromodeoxyuridine,Deoxyriboside, Bromouracil
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D004847 Epithelial Cells Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells. Adenomatous Epithelial Cells,Columnar Glandular Epithelial Cells,Cuboidal Glandular Epithelial Cells,Glandular Epithelial Cells,Squamous Cells,Squamous Epithelial Cells,Transitional Epithelial Cells,Adenomatous Epithelial Cell,Cell, Adenomatous Epithelial,Cell, Epithelial,Cell, Glandular Epithelial,Cell, Squamous,Cell, Squamous Epithelial,Cell, Transitional Epithelial,Cells, Adenomatous Epithelial,Cells, Epithelial,Cells, Glandular Epithelial,Cells, Squamous,Cells, Squamous Epithelial,Cells, Transitional Epithelial,Epithelial Cell,Epithelial Cell, Adenomatous,Epithelial Cell, Glandular,Epithelial Cell, Squamous,Epithelial Cell, Transitional,Epithelial Cells, Adenomatous,Epithelial Cells, Glandular,Epithelial Cells, Squamous,Epithelial Cells, Transitional,Glandular Epithelial Cell,Squamous Cell,Squamous Epithelial Cell,Transitional Epithelial Cell

Related Publications

J Y Liu, and P Nettesheim, and S H Randell
January 1984, Experimental lung research,
J Y Liu, and P Nettesheim, and S H Randell
December 2002, American journal of physiology. Lung cellular and molecular physiology,
J Y Liu, and P Nettesheim, and S H Randell
January 2013, Methods in molecular biology (Clifton, N.J.),
J Y Liu, and P Nettesheim, and S H Randell
December 1984, Experimental cell research,
J Y Liu, and P Nettesheim, and S H Randell
April 1991, Journal of cellular physiology,
J Y Liu, and P Nettesheim, and S H Randell
January 1985, Ciba Foundation symposium,
J Y Liu, and P Nettesheim, and S H Randell
November 1998, European journal of cell biology,
J Y Liu, and P Nettesheim, and S H Randell
April 1989, Carcinogenesis,
J Y Liu, and P Nettesheim, and S H Randell
August 2005, Archives of oral biology,
Copied contents to your clipboard!