Modulation of the suppression efficiency and amino acid identity of an artificial yeast amber isoleucine transfer RNA in Escherichia coli by a G-U pair in the anticodon stem. 1994

V Büttcher, and B Senger, and S Schumacher, and J Reinbolt, and F Fasiolo
UPR 9002 du CNRS, Institute de Biologie Moléculaire et Cellulaire, Strasbourg, France.

The artificial amber suppressor corresponding to the major isoleucine tRNA from yeast (pVBt5), when expressed in E. coli, is a poor suppressor of the amber mutation lacIam181-Z. By analysing mutant forms, we could show that this was due to the presence of a U30-G40 wobble pair in the anticodon stem of the yeast tRNA and not to the level of the heterologously expressed tRNA. Efficient suppressors were obtained by restoring a normal U30-A40 or G30-C40 Watson-Crick pair. In vivo the mutant forms are exclusively charged by the bacterial lysyl-tRNA synthetase (LysRS), whereas the original yeast amber tRNA is charged at a low level by E. coli glutaminyl-tRNA synthetase (GlnRS) and LysRS. The inversion of the U30-G40 pair also induces a loss of the Gln identity. We conclude from these experiments that the U30-G40 base pair constitutes a negative determinant for LysRS interaction which operates either at the level of complex formation or at the catalytic step. As no direct contacts are seen between GlnRS and positions 30-40 of the complexed homologous tRNA, the U30-G40 pair of pVBt5 is believed to influence aminoacylation by GlnRS indirectly, probably at the level of the anticodon loop conformation by favouring an optimal apposition of the anticodon nucleotides with the protein.

UI MeSH Term Description Entries
D007446 Chromosome Inversion An aberration in which a chromosomal segment is deleted and reinserted in the same place but turned 180 degrees from its original orientation, so that the gene sequence for the segment is reversed with respect to that of the rest of the chromosome. Inversion, Chromosome,Inversion, Chromosomal,Chromosomal Inversion,Chromosomal Inversions,Chromosome Inversions,Inversions, Chromosomal,Inversions, Chromosome
D008250 Lysine-tRNA Ligase An enzyme that activates lysine with its specific transfer RNA. EC 6.1.1.6. Lysyl T RNA Synthetase,Lys-tRNA Ligase,Lysyl-tRNA Synthetase,Ligase, Lys-tRNA,Ligase, Lysine-tRNA,Lys tRNA Ligase,Lysine tRNA Ligase,Lysyl tRNA Synthetase,Synthetase, Lysyl-tRNA
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D006147 Guanine
D000604 Amino Acyl-tRNA Synthetases A subclass of enzymes that aminoacylate AMINO ACID-SPECIFIC TRANSFER RNA with their corresponding AMINO ACIDS. Amino Acyl T RNA Synthetases,Amino Acyl-tRNA Ligases,Aminoacyl Transfer RNA Synthetase,Aminoacyl-tRNA Synthetase,Transfer RNA Synthetase,tRNA Synthetase,Acyl-tRNA Ligases, Amino,Acyl-tRNA Synthetases, Amino,Amino Acyl tRNA Ligases,Amino Acyl tRNA Synthetases,Aminoacyl tRNA Synthetase,Ligases, Amino Acyl-tRNA,RNA Synthetase, Transfer,Synthetase, Aminoacyl-tRNA,Synthetase, Transfer RNA,Synthetase, tRNA,Synthetases, Amino Acyl-tRNA
D000926 Anticodon The sequential set of three nucleotides in TRANSFER RNA that interacts with its complement in MESSENGER RNA, the CODON, during translation in the ribosome. Anticodons

Related Publications

V Büttcher, and B Senger, and S Schumacher, and J Reinbolt, and F Fasiolo
June 1983, Nucleic acids research,
V Büttcher, and B Senger, and S Schumacher, and J Reinbolt, and F Fasiolo
March 1968, Nature,
V Büttcher, and B Senger, and S Schumacher, and J Reinbolt, and F Fasiolo
May 1979, Nature,
V Büttcher, and B Senger, and S Schumacher, and J Reinbolt, and F Fasiolo
August 1979, Journal of molecular biology,
V Büttcher, and B Senger, and S Schumacher, and J Reinbolt, and F Fasiolo
May 1990, Proceedings of the National Academy of Sciences of the United States of America,
V Büttcher, and B Senger, and S Schumacher, and J Reinbolt, and F Fasiolo
February 1994, Journal of molecular biology,
V Büttcher, and B Senger, and S Schumacher, and J Reinbolt, and F Fasiolo
February 1998, Proceedings of the National Academy of Sciences of the United States of America,
V Büttcher, and B Senger, and S Schumacher, and J Reinbolt, and F Fasiolo
January 1981, Journal of bacteriology,
V Büttcher, and B Senger, and S Schumacher, and J Reinbolt, and F Fasiolo
August 1976, Nucleic acids research,
Copied contents to your clipboard!