Ability of the orally effective iron chelators dimethyl- and diethyl-hydroxypyrid-4-one and of deferoxamine to restore sarcolemmal thiolic enzyme activity in iron-loaded heart cells. 1994

G Link, and A Pinson, and C Hershko
Department of Human Nutrition and Metabolism, Hebrew University, Hadassah Medical School, Jerusalem, Israel.

In view of the profound functional and structural abnormalities shown in our previous studies in cultured, iron-loaded rat heart cells, we have examined the ability of the orally effective iron chelators dimethyl-3-hydroxypyrid-4-one (DMHP or L1) and diethyl-3-hydroxy-pyrid-4-one (DEHP or CP94) and of deferoxamine (DF) to reverse the damage caused by iron loading to heart cell organelles. At a concentration of 1.0 mmol/L, all three iron chelators were equally efficient in removing iron and restoring the activity of the thiolic sarcolemmal enzymes 5'-nucleotidase and Na,K,ATPase. However, at 0.1 mmol/L DMHP and DEHP were less effective than DF both in their iron-mobilizing effect and in promoting thiolic enzyme recovery. The superior efficiency of DF at low concentrations illustrates the advantage of the hexadentate chelating action of DF as compared with bidentate chelators such as DMHP and DEHP requiring a 3 to 1 molar ratio to iron for optimal effect. In contrast to its beneficial effect on sarcolemmal enzyme activity, iron chelation was unable to reverse the increase in beta-hexosaminidase activity caused by abnormal lysosomal fragility. Our study demonstrates for the first time that iron-induced peroxidative damage to the myocardial cell is associated with a marked loss of Na,K,ATPase activity, an enzyme with a major role in the maintenance of cellular resting potential. The timing of this damage and the restoration of Na,K,ATPase function by iron-chelating treatment suggest a cause-and-effect relationship between the observed injury to the sarcolemmal enzyme and the reversible electrophysiologic abnormalities observed in the same heart culture system in our previous studies.

UI MeSH Term Description Entries
D007501 Iron A metallic element with atomic symbol Fe, atomic number 26, and atomic weight 55.85. It is an essential constituent of HEMOGLOBINS; CYTOCHROMES; and IRON-BINDING PROTEINS. It plays a role in cellular redox reactions and in the transport of OXYGEN. Iron-56,Iron 56
D007502 Iron Chelating Agents Organic chemicals that form two or more coordination links with an iron ion. Once coordination has occurred, the complex formed is called a chelate. The iron-binding porphyrin group of hemoglobin is an example of a metal chelate found in biological systems. Iron Chelates,Agents, Iron Chelating,Chelates, Iron,Chelating Agents, Iron
D008247 Lysosomes A class of morphologically heterogeneous cytoplasmic particles in animal and plant tissues characterized by their content of hydrolytic enzymes and the structure-linked latency of these enzymes. The intracellular functions of lysosomes depend on their lytic potential. The single unit membrane of the lysosome acts as a barrier between the enzymes enclosed in the lysosome and the external substrate. The activity of the enzymes contained in lysosomes is limited or nil unless the vesicle in which they are enclosed is ruptured or undergoes MEMBRANE FUSION. (From Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed). Autolysosome,Autolysosomes,Lysosome
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D011728 Pyridones Pyridine derivatives with one or more keto groups on the ring. Pyridinones
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003676 Deferoxamine Natural product isolated from Streptomyces pilosus. It forms iron complexes and is used as a chelating agent, particularly in the mesylate form. Desferrioxamine,Deferoxamine B,Deferoxamine Mesilate,Deferoxamine Mesylate,Deferoxamine Methanesulfonate,Deferoximine,Deferrioxamine B,Desferal,Desferioximine,Desferrioxamine B,Desferrioxamine B Mesylate,Desferroxamine,Mesilate, Deferoxamine,Mesylate, Deferoxamine,Mesylate, Desferrioxamine B,Methanesulfonate, Deferoxamine
D006321 Heart The hollow, muscular organ that maintains the circulation of the blood. Hearts
D000077543 Deferiprone A pyridone derivative and iron chelator that is used in the treatment of IRON OVERLOAD in patients with THALASSEMIA. 1,2-Dimethyl-3-hydroxy-4-pyridinone,1,2-Dimethyl-3-hydroxypyrid-4-one,1,2-Dimethyl-3-hydroxypyridin-4-one,3-Hydroxy-1,2-dimethyl-4-pyridinone,DMOHPO,Ferriprox,HDMPP,1,2 Dimethyl 3 hydroxy 4 pyridinone,1,2 Dimethyl 3 hydroxypyrid 4 one,1,2 Dimethyl 3 hydroxypyridin 4 one,3 Hydroxy 1,2 dimethyl 4 pyridinone
D000254 Sodium-Potassium-Exchanging ATPase An enzyme that catalyzes the active transport system of sodium and potassium ions across the cell wall. Sodium and potassium ions are closely coupled with membrane ATPase which undergoes phosphorylation and dephosphorylation, thereby providing energy for transport of these ions against concentration gradients. ATPase, Sodium, Potassium,Adenosinetriphosphatase, Sodium, Potassium,Na(+)-K(+)-Exchanging ATPase,Na(+)-K(+)-Transporting ATPase,Potassium Pump,Sodium Pump,Sodium, Potassium ATPase,Sodium, Potassium Adenosinetriphosphatase,Sodium-Potassium Pump,Adenosine Triphosphatase, Sodium, Potassium,Na(+) K(+)-Transporting ATPase,Sodium, Potassium Adenosine Triphosphatase,ATPase Sodium, Potassium,ATPase, Sodium-Potassium-Exchanging,Adenosinetriphosphatase Sodium, Potassium,Pump, Potassium,Pump, Sodium,Pump, Sodium-Potassium,Sodium Potassium Exchanging ATPase,Sodium Potassium Pump

Related Publications

G Link, and A Pinson, and C Hershko
September 1991, Research communications in chemical pathology and pharmacology,
G Link, and A Pinson, and C Hershko
January 1990, Annals of the New York Academy of Sciences,
G Link, and A Pinson, and C Hershko
January 1993, Bone marrow transplantation,
G Link, and A Pinson, and C Hershko
June 1987, Lancet (London, England),
G Link, and A Pinson, and C Hershko
December 1987, British medical journal (Clinical research ed.),
Copied contents to your clipboard!