Cells expressing human glucocerebrosidase from a retroviral vector repopulate macrophages and central nervous system microglia after murine bone marrow transplantation. 1994

W J Krall, and P M Challita, and L S Perlmutter, and D C Skelton, and D B Kohn
Division of Research Immunology and Bone Marrow Transplantation, Childrens Hospital, Los Angeles, CA 90027.

Gaucher disease is an inherited lysosomal storage disease in which the loss in functional activity of glucocerebrosidase (GC) results in the storage of its lipid substrate in cells of the macrophage lineage. A gene therapy approach involving retroviral transduction of autologous bone marrow (BM) followed by transplantation has been recently approved for clinical trial. Amelioration of the disease symptoms may depend on the replacement of diseased macrophages with incoming cells expressing human GC; however, the processes of donor cell engraftment and vector gene expression have not been addressed at the cellular level in relevant tissues. Therefore, we undertook a comprehensive immunohistologic study of macrophage and microglia replacement after murine BM transplantation with retrovirus-marked BM. Serial quantitative PCR analyses were employed to provide an overview of the time course of engraftment of vector-marked cells in a panel of tissues. Following reconstitution of hematopoietic tissues with vector-marked donor cells at early stages, GC+ cells began to infiltrate the liver, lung, brain, and spinal cord by 3 months after transplant. Immunohistochemical analyses of PCR+ tissues using the 8E4 monoclonal antibody specific for human GC revealed that macrophages expressing human GC had partially reconstituted the Mac-1+ population in all tissues in a manner characteristic to each tissue type. In the brain, 20% of the total microglia had been replaced with donor cells expressing GC by 3 to 4 months after transplant. The finding that significant numbers of donor cells expressing a retroviral gene product immigrate to the central nervous system suggests that gene therapy for neuronopathic forms of lysosomal storage diseases as well as antiviral gene therapy for AIDS may be feasible.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D008297 Male Males
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D005819 Genetic Markers A phenotypically recognizable genetic trait which can be used to identify a genetic locus, a linkage group, or a recombination event. Chromosome Markers,DNA Markers,Markers, DNA,Markers, Genetic,Genetic Marker,Marker, Genetic,Chromosome Marker,DNA Marker,Marker, Chromosome,Marker, DNA,Markers, Chromosome
D005822 Genetic Vectors DNA molecules capable of autonomous replication within a host cell and into which other DNA sequences can be inserted and thus amplified. Many are derived from PLASMIDS; BACTERIOPHAGES; or VIRUSES. They are used for transporting foreign genes into recipient cells. Genetic vectors possess a functional replicator site and contain GENETIC MARKERS to facilitate their selective recognition. Cloning Vectors,Shuttle Vectors,Vectors, Genetic,Cloning Vector,Genetic Vector,Shuttle Vector,Vector, Cloning,Vector, Genetic,Vector, Shuttle,Vectors, Cloning,Vectors, Shuttle
D005962 Glucosylceramidase A glycosidase that hydrolyzes a glucosylceramide to yield free ceramide plus glucose. Deficiency of this enzyme leads to abnormally high concentrations of glucosylceramide in the brain in GAUCHER DISEASE. EC 3.2.1.45. Glucocerebrosidase,Acid beta-Glucosidase,Glucocerebroside beta-Glucosidase,Glucosyl Ceramidase,Glucosylceramide beta-Glucosidase,Glucosylsphingosine Glucosyl Hydrolase,beta-Glucocerebrosidase,Acid beta Glucosidase,Ceramidase, Glucosyl,Glucocerebroside beta Glucosidase,Glucosyl Hydrolase, Glucosylsphingosine,Glucosylceramide beta Glucosidase,Hydrolase, Glucosylsphingosine Glucosyl,beta Glucocerebrosidase,beta-Glucosidase, Acid,beta-Glucosidase, Glucocerebroside,beta-Glucosidase, Glucosylceramide
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

W J Krall, and P M Challita, and L S Perlmutter, and D C Skelton, and D B Kohn
February 1990, Blood,
W J Krall, and P M Challita, and L S Perlmutter, and D C Skelton, and D B Kohn
December 1992, Proceedings of the National Academy of Sciences of the United States of America,
W J Krall, and P M Challita, and L S Perlmutter, and D C Skelton, and D B Kohn
November 1991, Bone marrow transplantation,
W J Krall, and P M Challita, and L S Perlmutter, and D C Skelton, and D B Kohn
August 1999, Stroke,
W J Krall, and P M Challita, and L S Perlmutter, and D C Skelton, and D B Kohn
February 1984, The New England journal of medicine,
W J Krall, and P M Challita, and L S Perlmutter, and D C Skelton, and D B Kohn
July 1984, Transplantation,
W J Krall, and P M Challita, and L S Perlmutter, and D C Skelton, and D B Kohn
March 1988, Laboratory investigation; a journal of technical methods and pathology,
W J Krall, and P M Challita, and L S Perlmutter, and D C Skelton, and D B Kohn
May 2001, No to hattatsu = Brain and development,
W J Krall, and P M Challita, and L S Perlmutter, and D C Skelton, and D B Kohn
February 2001, Journal of immunology (Baltimore, Md. : 1950),
W J Krall, and P M Challita, and L S Perlmutter, and D C Skelton, and D B Kohn
February 1988, Science (New York, N.Y.),
Copied contents to your clipboard!