Perineuronal nets--a specialized form of extracellular matrix in the adult nervous system. 1994

M R Celio, and I Blümcke
Institute of Histology and General Embryology, University of Fribourg, Switzerland.

One century ago, Camillo Golgi described 'perineuronal nets' enwrapping the cell bodies and proximal dendrites of certain neurons in the adult mammalian central nervous system and suggested that they represent a supportive and protective scaffolding. Although other neuroanatomists validated the existence of these nets on selected neurons in the adult brain, there was a lack of agreement on their origins, composition and function. The application of modern molecular and ultrastructural methods has brought new insights and a renewed interest in these classic observations. Recent data suggest that perineuronal nets result from the visualization of extracellular matrix molecules that are confined to the space interposed between glial processes and the nerve cells that they outline. The material confined to these spaces can be visualized selectively by antibodies directed to glycoproteins (e.g., tenascin and restrictin/janusin), proteoglycans (e.g., chondroitin sulfates), markers for hyaluronan as well as by lectins recognizing N-acetylgalactosamine and by monoclonal antibodies directed to epitopes on unknown molecules (e.g., HNK-1, VC1.1 and Cat 301). This review examines the emerging clarification of classical observations of perineuronal nets and the functional implications suggested by their molecular composition. Also discussed are studies that further extend observations on the time of development and of the specificity in the occurrence of perineuronal nets. In the adult brain the molecules constituting the 'perineuronal nets of matrix' could serve as recognition molecules between certain neurons and their surrounding cells and participate in the selection and consolidation of their relationship.

UI MeSH Term Description Entries
D008322 Mammals Warm-blooded vertebrate animals belonging to the class Mammalia, including all that possess hair and suckle their young. Mammalia,Mammal
D009415 Nerve Net A meshlike structure composed of interconnecting nerve cells that are separated at the synaptic junction or joined to one another by cytoplasmic processes. In invertebrates, for example, the nerve net allows nerve impulses to spread over a wide area of the net because synapses can pass information in any direction. Neural Networks (Anatomic),Nerve Nets,Net, Nerve,Nets, Nerve,Network, Neural (Anatomic),Networks, Neural (Anatomic),Neural Network (Anatomic)
D009419 Nerve Tissue Proteins Proteins, Nerve Tissue,Tissue Proteins, Nerve
D009420 Nervous System The entire nerve apparatus, composed of a central part, the brain and spinal cord, and a peripheral part, the cranial and spinal nerves, autonomic ganglia, and plexuses. (Stedman, 26th ed) Nervous Systems,System, Nervous,Systems, Nervous
D009457 Neuroglia The non-neuronal cells of the nervous system. They not only provide physical support, but also respond to injury, regulate the ionic and chemical composition of the extracellular milieu, participate in the BLOOD-BRAIN BARRIER and BLOOD-RETINAL BARRIER, form the myelin insulation of nervous pathways, guide neuronal migration during development, and exchange metabolites with neurons. Neuroglia have high-affinity transmitter uptake systems, voltage-dependent and transmitter-gated ion channels, and can release transmitters, but their role in signaling (as in many other functions) is unclear. Bergmann Glia,Bergmann Glia Cells,Bergmann Glial Cells,Glia,Glia Cells,Satellite Glia,Satellite Glia Cells,Satellite Glial Cells,Glial Cells,Neuroglial Cells,Bergmann Glia Cell,Bergmann Glial Cell,Cell, Bergmann Glia,Cell, Bergmann Glial,Cell, Glia,Cell, Glial,Cell, Neuroglial,Cell, Satellite Glia,Cell, Satellite Glial,Glia Cell,Glia Cell, Bergmann,Glia Cell, Satellite,Glia, Bergmann,Glia, Satellite,Glial Cell,Glial Cell, Bergmann,Glial Cell, Satellite,Glias,Neuroglial Cell,Neuroglias,Satellite Glia Cell,Satellite Glial Cell,Satellite Glias
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D005109 Extracellular Matrix A meshwork-like substance found within the extracellular space and in association with the basement membrane of the cell surface. It promotes cellular proliferation and provides a supporting structure to which cells or cell lysates in culture dishes adhere. Matrix, Extracellular,Extracellular Matrices,Matrices, Extracellular
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012741 Sexual Maturation Achievement of full sexual capacity in animals and in humans. Sex Maturation,Maturation, Sex,Maturation, Sexual

Related Publications

M R Celio, and I Blümcke
August 2022, Molecular psychiatry,
M R Celio, and I Blümcke
November 2011, Developmental neurobiology,
M R Celio, and I Blümcke
January 2006, Neuroscience,
M R Celio, and I Blümcke
January 2020, Methods in molecular biology (Clifton, N.J.),
M R Celio, and I Blümcke
August 2019, Nature reviews. Neuroscience,
M R Celio, and I Blümcke
April 2006, Molecular and cellular neurosciences,
M R Celio, and I Blümcke
January 2022, Frontiers in cellular neuroscience,
M R Celio, and I Blümcke
November 2015, Hearing research,
Copied contents to your clipboard!