Xenobiotic acyl-CoA formation: evidence of kinetically distinct hepatic microsomal long-chain fatty acid and nafenopin-CoA ligases. 1994

K M Knights, and B J Roberts
Department of Clinical Pharmacology, Flinders University of South Australia, Bedford Park.

Multiplicity of hepatic microsomal coenzyme A ligases catalyzing acyl-CoA thioester formation is an important factor for consideration in relation to the metabolism of xenobiotic carboxylic acids. In this study the kinetic characteristics of rat hepatic microsomal nafenopin-CoA ligase were studied and compared with those of long-chain fatty acid (palmitoyl) CoA ligase. The high affinity component of palmitoyl-CoA formation was inhibited by nafenopin (Ki 53 microM) and ciprofibrate (Ki 1000 microM). Analagous to palmitoyl-CoA, nafenopin-CoA formation was catalyzed by an apparent high affinity low capacity isoform (Km 6 +/- 2.5 microM, Vmax 0.33 +/- 0.12 nmol/mg per min) which was inhibited competitively by palmitic acid (mean Ki 1.7 microM, n = 5) and R-ibuprofen (mean Ki 10.8 microM, n = 5) whilst ciprofibrate and clofibric acid were ineffective as inhibitors. The intrinsic metabolic clearance of nafenopin to nafenopin-CoA (Vmax/Km 0.057 +/- 0.011 nmol/mg/min/ +/- M) was similar to that reported recently for the formation of ibuprofenyl-CoA by rat liver microsomes. Evidence of both a substantial difference between the Km and Ki for nafenopin and lack of commonality with regard to xenobiotic inhibitors suggests that the high affinity microsomal nafenopin-CoA and long-chain fatty acid-CoA ligases are kinetically distinct. Thus until the current 'long-chain like' xenobiotic-CoA ligases are fully characterised in terms of substrate specificity, inhibitor profile, etc, it will be impossible to rationalize (and possibly predict) the metabolism and hence toxicity of xenobiotic carboxylic acids forming acyl-CoA thioester intermediates.

UI MeSH Term Description Entries
D008297 Male Males
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D009255 Nafenopin A peroxisome proliferator that is used experimentally to promote liver tumors. It has been used as an antihyperlipoproteinemic agent. CH-13437,Melipan,Nafenoic Acid,SU-13,437,Acid, Nafenoic,CH 13437,CH13437,SU 13,437,SU13,437
D010169 Palmitic Acids A group of 16-carbon fatty acids that contain no double bonds. Acids, Palmitic
D012097 Repressor Proteins Proteins which maintain the transcriptional quiescence of specific GENES or OPERONS. Classical repressor proteins are DNA-binding proteins that are normally bound to the OPERATOR REGION of an operon, or the ENHANCER SEQUENCES of a gene until a signal occurs that causes their release. Repressor Molecules,Transcriptional Silencing Factors,Proteins, Repressor,Silencing Factors, Transcriptional
D003066 Coenzyme A Ligases Enzymes that catalyze the formation of acyl-CoA derivatives. EC 6.2.1. Acyl CoA Synthetase,Acyl CoA Synthetases,Acyl Coenzyme A Synthetase,Acyl Coenzyme A Synthetases,Coenzyme A Ligase,Coenzyme A Synthetase,Coenzyme A Synthetases,Acid-Thiol Ligases,Co A Ligases,A Ligase, Coenzyme,A Synthetase, Coenzyme,Acid Thiol Ligases,CoA Synthetase, Acyl,CoA Synthetases, Acyl,Ligase, Coenzyme A,Ligases, Acid-Thiol,Ligases, Co A,Ligases, Coenzyme A,Synthetase, Acyl CoA,Synthetase, Coenzyme A,Synthetases, Acyl CoA,Synthetases, Coenzyme A
D000214 Acyl Coenzyme A S-Acyl coenzyme A. Fatty acid coenzyme A derivatives that are involved in the biosynthesis and oxidation of fatty acids as well as in ceramide formation. Acyl CoA,Fatty Acyl CoA,Long-Chain Acyl CoA,Acyl CoA, Fatty,Acyl CoA, Long-Chain,CoA, Acyl,CoA, Fatty Acyl,CoA, Long-Chain Acyl,Coenzyme A, Acyl,Long Chain Acyl CoA
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001667 Binding, Competitive The interaction of two or more substrates or ligands with the same binding site. The displacement of one by the other is used in quantitative and selective affinity measurements. Competitive Binding
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities

Related Publications

K M Knights, and B J Roberts
August 2007, Future lipidology,
K M Knights, and B J Roberts
September 2010, American journal of physiology. Endocrinology and metabolism,
K M Knights, and B J Roberts
August 1999, Biochimica et biophysica acta,
K M Knights, and B J Roberts
November 1988, Archives of biochemistry and biophysics,
K M Knights, and B J Roberts
September 1972, Indian journal of biochemistry & biophysics,
K M Knights, and B J Roberts
June 1963, Biochimica et biophysica acta,
Copied contents to your clipboard!