Receptor-stimulated guanine-nucleotide-triphosphate binding to guanine-nucleotide-binding regulatory proteins. Nucleotide exchange and beta-subunit-mediated phosphotransfer reactions. 1994

S Kaldenberg-Stasch, and M Baden, and B Fesseler, and K H Jakobs, and T Wieland
Institut für Pharmakologie, Universität GH Essen, Germany.

In order to study whether phosphate transfer reactions are involved in the binding of guanine nucleotide triphosphates to guanine-nucleotide-binding regulatory proteins, binding of the GTP analogues, guanosine 5'-[gamma-thio]triphosphate, GTP[S], and guanosine 5'-[beta, gamma-imino]triphosphate, p[NH]ppG, and the regulation of binding by the formyl-peptide-receptor agonist, fMet-Leu-Phe, were studied in membranes of differentiated HL-60 cells. For fMet-Leu-Phe-stimulated binding of either GTP analogue, a competing nucleotide was required. With GDP as the competing nucleotide, initial rates of fMet-Leu-Phe-stimulated binding of GTP[S] and p[NH]ppG were similar for up to approximately 30 s. Thereafter, receptor-stimulated binding of p[NH]ppG rapidly reached equilibrium, whereas the binding of GTP[S] proceeded further. At equipotent concentrations of p[NH]ppG and GTP[S], maximal fMet-Leu-Phe-stimulated binding of GTP[S] was approximately twofold higher than that of p[NH]ppG. Finally, for half-maximal receptor-stimulated binding of GTP[S], approximately fivefold higher concentrations of both Mg2+ and GDP were required than for p[NH]ppG binding. With p[NH]ppG as the competing nucleotide, the extent of receptor-stimulated binding of GTP[S] as well as its Mg2+ requirement and time course were similar to the receptor-stimulated p[NH]ppG binding observed in the presence of GDP. However, with GTP[S] as the competing nucleotide, fMet-Leu-Phe reduced the binding of p[NH]ppG, a reaction further enhanced when GDP was additionally present. Under similar conditions as used in the binding studies, GTP[S] thiophosphorylated a 35-kDa protein, which is most likely a guanine-nucleotide-binding regulatory protein beta subunit [Wieland, T., Nürnberg, B., Ulibarri, I., Kaldenberg-Stasch, S., Schultz, G. & Jakobs, K. H. (1993) J. Biol. Chem. 268, 18111-18118]. The thiophosphorylation state of this protein was regulated by guanine nucleotides, Mg2+ and, most importantly, by activated formyl-peptide receptors. The data thus provide evidence for an essential difference between GTP[S] and p[NH]ppG binding to guanine-nucleotide-binding regulatory proteins and suggest that, in addition to the nucleotide-exchange reaction, a (thio)phosphate-group-transfer process via guanine-nucleotide-binding regulatory protein beta subunits is involved in the receptor-stimulated binding of guanine nucleotide triphosphates to guanine-nucleotide-binding regulatory proteins.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D009240 N-Formylmethionine Leucyl-Phenylalanine A formylated tripeptide originally isolated from bacterial filtrates that is positively chemotactic to polymorphonuclear leucocytes, and causes them to release lysosomal enzymes and become metabolically activated. F-Met-Leu-Phe,N-Formyl-Methionyl-Leucyl-Phenylalanine,Formylmet-Leu-Phe,Formylmethionyl Peptide,Formylmethionyl-Leucyl-Phenylalanine,Formylmethionylleucylphenylalanine,N-Formylated Peptide,N-formylmethionyl-leucyl-phenylalanine,fMet-Leu-Phe,F Met Leu Phe,Formylmet Leu Phe,Formylmethionyl Leucyl Phenylalanine,Leucyl-Phenylalanine, N-Formylmethionine,N Formyl Methionyl Leucyl Phenylalanine,N Formylated Peptide,N Formylmethionine Leucyl Phenylalanine,N formylmethionyl leucyl phenylalanine,Peptide, Formylmethionyl,Peptide, N-Formylated,fMet Leu Phe
D010710 Phosphates Inorganic salts of phosphoric acid. Inorganic Phosphate,Phosphates, Inorganic,Inorganic Phosphates,Orthophosphate,Phosphate,Phosphate, Inorganic
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011971 Receptors, Immunologic Cell surface molecules on cells of the immune system that specifically bind surface molecules or messenger molecules and trigger changes in the behavior of cells. Although these receptors were first identified in the immune system, many have important functions elsewhere. Immunologic Receptors,Immunologic Receptor,Immunological Receptors,Receptor, Immunologic,Receptors, Immunological
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D006153 Guanosine Diphosphate A guanine nucleotide containing two phosphate groups esterified to the sugar moiety. GDP,Guanosine 5'-Diphosphate,Guanosine 5'-Trihydrogen Diphosphate,5'-Diphosphate, Guanosine,5'-Trihydrogen Diphosphate, Guanosine,Diphosphate, Guanosine,Diphosphate, Guanosine 5'-Trihydrogen,Guanosine 5' Diphosphate,Guanosine 5' Trihydrogen Diphosphate
D006160 Guanosine Triphosphate Guanosine 5'-(tetrahydrogen triphosphate). A guanine nucleotide containing three phosphate groups esterified to the sugar moiety. GTP,Triphosphate, Guanosine
D006165 Guanylyl Imidodiphosphate A non-hydrolyzable analog of GTP, in which the oxygen atom bridging the beta to the gamma phosphate is replaced by a nitrogen atom. It binds tightly to G-protein in the presence of Mg2+. The nucleotide is a potent stimulator of ADENYLYL CYCLASES. GMP-PNP,GMP-P(NH)P,Gpp(NH)p,Guanosine 5'-(Beta,Gamma-Imido)Triphosphate,Guanyl-5'-Imidodiphosphate,P(NH)PPG,Guanyl 5' Imidodiphosphate,Imidodiphosphate, Guanylyl

Related Publications

S Kaldenberg-Stasch, and M Baden, and B Fesseler, and K H Jakobs, and T Wieland
November 1986, Molecular pharmacology,
S Kaldenberg-Stasch, and M Baden, and B Fesseler, and K H Jakobs, and T Wieland
February 1989, The American journal of physiology,
S Kaldenberg-Stasch, and M Baden, and B Fesseler, and K H Jakobs, and T Wieland
January 1987, International journal of tissue reactions,
S Kaldenberg-Stasch, and M Baden, and B Fesseler, and K H Jakobs, and T Wieland
September 1989, Biochimica et biophysica acta,
S Kaldenberg-Stasch, and M Baden, and B Fesseler, and K H Jakobs, and T Wieland
January 1987, Methods in enzymology,
S Kaldenberg-Stasch, and M Baden, and B Fesseler, and K H Jakobs, and T Wieland
December 1994, Journal of pharmacological and toxicological methods,
S Kaldenberg-Stasch, and M Baden, and B Fesseler, and K H Jakobs, and T Wieland
November 1987, Proceedings of the National Academy of Sciences of the United States of America,
S Kaldenberg-Stasch, and M Baden, and B Fesseler, and K H Jakobs, and T Wieland
February 1994, The Journal of biological chemistry,
S Kaldenberg-Stasch, and M Baden, and B Fesseler, and K H Jakobs, and T Wieland
January 1992, Molecular biology of the cell,
S Kaldenberg-Stasch, and M Baden, and B Fesseler, and K H Jakobs, and T Wieland
January 1984, Advances in experimental medicine and biology,
Copied contents to your clipboard!