Cloning, sequencing, and analysis of the griseusin polyketide synthase gene cluster from Streptomyces griseus. 1994

T W Yu, and M J Bibb, and W P Revill, and D A Hopwood
John Innes Institute, John Innes Centre, Norwich, United Kingdom.

A fragment of DNA was cloned from the Streptomyces griseus K-63 genome by using genes (act) for the actinorhodin polyketide synthase (PKS) of Streptomyces coelicolor as a probe. Sequencing of a 5.4-kb segment of the cloned DNA revealed a set of five gris open reading frames (ORFs), corresponding to the act PKS genes, in the following order: ORF1 for a ketosynthase, ORF2 for a chain length-determining factor, ORF3 for an acyl carrier protein, ORF5 for a ketoreductase, and ORF4 for a cyclase-dehydrase. Replacement of the gris genes with a marker gene in the S. griseus genome by using a single-stranded suicide vector propagated in Escherichia coli resulted in loss of the ability to produce griseusins A and B, showing that the five gris genes do indeed encode the type II griseusin PKS. These genes, encoding a PKS that is programmed differently from those for other aromatic PKSs so far available, will provide further valuable material for analysis of the programming mechanism by the construction and analysis of strains carrying hybrid PKS.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009097 Multienzyme Complexes Systems of enzymes which function sequentially by catalyzing consecutive reactions linked by common metabolic intermediates. They may involve simply a transfer of water molecules or hydrogen atoms and may be associated with large supramolecular structures such as MITOCHONDRIA or RIBOSOMES. Complexes, Multienzyme
D009285 Naphthoquinones Naphthalene rings which contain two ketone moieties in any position. They can be substituted in any position except at the ketone groups. Naphthalenediones,Naphthazarins,Naphthoquinone
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D005810 Multigene Family A set of genes descended by duplication and variation from some ancestral gene. Such genes may be clustered together on the same chromosome or dispersed on different chromosomes. Examples of multigene families include those that encode the hemoglobins, immunoglobulins, histocompatibility antigens, actins, tubulins, keratins, collagens, heat shock proteins, salivary glue proteins, chorion proteins, cuticle proteins, yolk proteins, and phaseolins, as well as histones, ribosomal RNA, and transfer RNA genes. The latter three are examples of reiterated genes, where hundreds of identical genes are present in a tandem array. (King & Stanfield, A Dictionary of Genetics, 4th ed) Gene Clusters,Genes, Reiterated,Cluster, Gene,Clusters, Gene,Families, Multigene,Family, Multigene,Gene Cluster,Gene, Reiterated,Multigene Families,Reiterated Gene,Reiterated Genes
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000880 Anthraquinones Compounds based on ANTHRACENES which contain two KETONES in any position. Substitutions can be in any position except on the ketone groups. Anthracenedione,Anthracenediones,Anthranoid,Anthraquinone,Anthraquinone Compound,Anthraquinone Derivative,Dianthraquinones,Dianthrones,Anthranoids,Anthraquinone Compounds,Anthraquinone Derivatives,Compound, Anthraquinone,Derivative, Anthraquinone
D000900 Anti-Bacterial Agents Substances that inhibit the growth or reproduction of BACTERIA. Anti-Bacterial Agent,Anti-Bacterial Compound,Anti-Mycobacterial Agent,Antibacterial Agent,Antibiotics,Antimycobacterial Agent,Bacteriocidal Agent,Bacteriocide,Anti-Bacterial Compounds,Anti-Mycobacterial Agents,Antibacterial Agents,Antibiotic,Antimycobacterial Agents,Bacteriocidal Agents,Bacteriocides,Agent, Anti-Bacterial,Agent, Anti-Mycobacterial,Agent, Antibacterial,Agent, Antimycobacterial,Agent, Bacteriocidal,Agents, Anti-Bacterial,Agents, Anti-Mycobacterial,Agents, Antibacterial,Agents, Antimycobacterial,Agents, Bacteriocidal,Anti Bacterial Agent,Anti Bacterial Agents,Anti Bacterial Compound,Anti Bacterial Compounds,Anti Mycobacterial Agent,Anti Mycobacterial Agents,Compound, Anti-Bacterial,Compounds, Anti-Bacterial
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

T W Yu, and M J Bibb, and W P Revill, and D A Hopwood
November 2005, Journal of the American Chemical Society,
T W Yu, and M J Bibb, and W P Revill, and D A Hopwood
February 1992, Biotechnology and applied biochemistry,
T W Yu, and M J Bibb, and W P Revill, and D A Hopwood
December 2006, Journal of microbiology (Seoul, Korea),
T W Yu, and M J Bibb, and W P Revill, and D A Hopwood
June 2002, Gene,
T W Yu, and M J Bibb, and W P Revill, and D A Hopwood
June 2004, DNA sequence : the journal of DNA sequencing and mapping,
T W Yu, and M J Bibb, and W P Revill, and D A Hopwood
August 1994, The Journal of antibiotics,
T W Yu, and M J Bibb, and W P Revill, and D A Hopwood
February 1998, FEMS microbiology letters,
T W Yu, and M J Bibb, and W P Revill, and D A Hopwood
October 2006, The Journal of biological chemistry,
T W Yu, and M J Bibb, and W P Revill, and D A Hopwood
January 1998, Molecular & general genetics : MGG,
Copied contents to your clipboard!