Electron transfer events in chloride-depleted photosystem II. 1994

A Boussac, and A W Rutherford
Departement de Biologie Cellulaire et Moleculaire, Centre d'Etudes Saclay, Gif sur Yvette, France.

Cl- and Ca2+ are obligatory cofactors in photosystem II (PS-II), the oxygen-evolving enzyme of plants. The electron transfer events in Cl(-)-depleted PS-II were investigated by using continuous wave (cw) and pulsed EPR, and the results were compared with those obtained in untreated and Ca(2+)-depleted PS-II. In Cl(-)-depleted PS-II, the S1 to S2 transition is not accompanied by the appearance of the S2 manganese signal in both cw and field-swept echo experiments. In the S3 state, the cw experiment reveals the presence of a radical signal, and the field-swept echo experiment reveals the presence of a manganese signal similar to that observed in the S2 state in Cl(-)-reconstituted PS-II. A relaxation enhancement study of the oxidized tyrosine D indicates that a relaxation enhancement occurs only in the S2 to S3 transition and not in the S1 to S2 transition. The results are interpreted by the following preferred model. In Cl(-)-depleted PS-II, the S1 to S2 transition corresponds to the oxidation of a component other than the manganese cluster, possibly an amino acid, and the S2 to S3 transition corresponds to the oxidation of the manganese complex. This oxidation sequence is the opposite of that observed in Ca(2+)-depleted PS-II and may be due to a modulation by chloride of the relative redox potentials of the manganese cluster and a nearby oxidizable amino acid. An alternative model involving manganese oxidation that is invisible in the S1 to S2 transition but that becomes visible on S3 formation cannot be ruled out, although it is considered less likely.

UI MeSH Term Description Entries
D008345 Manganese A trace element with atomic symbol Mn, atomic number 25, and atomic weight 54.94. It is concentrated in cell mitochondria, mostly in the pituitary gland, liver, pancreas, kidney, and bone, influences the synthesis of mucopolysaccharides, stimulates hepatic synthesis of cholesterol and fatty acids, and is a cofactor in many enzymes, including arginase and alkaline phosphatase in the liver. (From AMA Drug Evaluations Annual 1992, p2035)
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010088 Oxidoreductases The class of all enzymes catalyzing oxidoreduction reactions. The substrate that is oxidized is regarded as a hydrogen donor. The systematic name is based on donor:acceptor oxidoreductase. The recommended name will be dehydrogenase, wherever this is possible; as an alternative, reductase can be used. Oxidase is only used in cases where O2 is the acceptor. (Enzyme Nomenclature, 1992, p9) Dehydrogenases,Oxidases,Oxidoreductase,Reductases,Dehydrogenase,Oxidase,Reductase
D010100 Oxygen An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration. Dioxygen,Oxygen-16,Oxygen 16
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002712 Chlorides Inorganic compounds derived from hydrochloric acid that contain the Cl- ion. Chloride,Chloride Ion Level,Ion Level, Chloride,Level, Chloride Ion
D004578 Electron Spin Resonance Spectroscopy A technique applicable to the wide variety of substances which exhibit paramagnetism because of the magnetic moments of unpaired electrons. The spectra are useful for detection and identification, for determination of electron structure, for study of interactions between molecules, and for measurement of nuclear spins and moments. (From McGraw-Hill Encyclopedia of Science and Technology, 7th edition) Electron nuclear double resonance (ENDOR) spectroscopy is a variant of the technique which can give enhanced resolution. Electron spin resonance analysis can now be used in vivo, including imaging applications such as MAGNETIC RESONANCE IMAGING. ENDOR,Electron Nuclear Double Resonance,Electron Paramagnetic Resonance,Paramagnetic Resonance,Electron Spin Resonance,Paramagnetic Resonance, Electron,Resonance, Electron Paramagnetic,Resonance, Electron Spin,Resonance, Paramagnetic
D004579 Electron Transport The process by which ELECTRONS are transported from a reduced substrate to molecular OXYGEN. (From Bennington, Saunders Dictionary and Encyclopedia of Laboratory Medicine and Technology, 1984, p270) Respiratory Chain,Chain, Respiratory,Chains, Respiratory,Respiratory Chains,Transport, Electron
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino
D014675 Vegetables A food group comprised of EDIBLE PLANTS or their parts. Vegetable

Related Publications

A Boussac, and A W Rutherford
September 1990, Biochemistry,
A Boussac, and A W Rutherford
April 1998, Biochimica et biophysica acta,
A Boussac, and A W Rutherford
January 1985, Photosynthesis research,
A Boussac, and A W Rutherford
July 2021, Biochimica et biophysica acta. Bioenergetics,
A Boussac, and A W Rutherford
December 1997, Biochemistry,
A Boussac, and A W Rutherford
January 2007, Cell biochemistry and biophysics,
A Boussac, and A W Rutherford
May 1996, European journal of biochemistry,
A Boussac, and A W Rutherford
September 2019, Biochemistry. Biokhimiia,
Copied contents to your clipboard!