Divergent anti-human immunodeficiency virus activity and anabolic phosphorylation of 2',3'-dideoxynucleoside analogs in resting and activated human cells. 1994

W Y Gao, and R Agbaria, and J S Driscoll, and H Mitsuya
Experimental Retrovirology Section, National Cancer Institute, Bethesda, Maryland 20892.

The mechanism of divergent anti-human immunodeficiency virus type 1 (HIV-1) activity of various 2',3'-dideoxynucleoside analogs (ddNs) in peripheral blood mononuclear cells (PBM) was studied. We demonstrate that the in vitro anti-HIV-1 activity of various ddNs varies profoundly and that the divergent antiviral activity is related to the extent of anabolic phosphorylation of each ddN and its counterpart 2'-deoxynucleoside (dN). We also show that certain ddNs cause a reduction of their counterpart dNTP formation in PBM in the following order: 2',3'-dideoxycytidine (ddC) >> 2',3'-didehydro-2',3'-dideoxythymidine (d4T), 3'-thia-2',3'-dideoxycytidine (3TC), 2',3'-dideoxyinosine (ddI), 2',3'-dideoxyguanosine (ddG) > 3'-azido-2',3'-dideoxythymidine (AZT) > 2'-beta-fluoro-2',3'-dideoxyadenosine (F-ara-ddA). Based on the phosphorylation profiles, anti-HIV-1 ddNs can be classified into two groups: (i) cell-activation-dependent ddNs such as AZT and d4T that are preferentially phosphorylated, yield higher ratios of ddNTP/dNTP, and exert more potent anti-HIV-1 activity in activated cells than in resting cells; and (ii) cell-activation-independent ddNs including ddI (and 2',3'-dideoxyadenosine), F-ara-ddA, ddG, ddC, and 3TC that produce higher ratios of ddNTP/dNTP and exert more potent anti-HIV-1 activity in resting cells. These data should provide a basis for the elucidation of the mechanism of the divergent antiretroviral activity of ddNs.

UI MeSH Term Description Entries
D009000 Monocytes Large, phagocytic mononuclear leukocytes produced in the vertebrate BONE MARROW and released into the BLOOD; contain a large, oval or somewhat indented nucleus surrounded by voluminous cytoplasm and numerous organelles. Monocyte
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D010835 Phytohemagglutinins Mucoproteins isolated from the kidney bean (Phaseolus vulgaris); some of them are mitogenic to lymphocytes, others agglutinate all or certain types of erythrocytes or lymphocytes. They are used mainly in the study of immune mechanisms and in cell culture. Kidney Bean Lectin,Kidney Bean Lectins,Lectins, Kidney Bean,Phaseolus vulgaris Lectin,Phaseolus vulgaris Lectins,Phytohemagglutinin,Hemagglutinins, Plant,Lectin, Kidney Bean,Lectin, Phaseolus vulgaris,Lectins, Phaseolus vulgaris,Plant Hemagglutinins
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003842 Deoxycytidine Kinase An enzyme that catalyzes reversibly the phosphorylation of deoxycytidine with the formation of a nucleoside diphosphate and deoxycytidine monophosphate. Cytosine arabinoside can also act as an acceptor. All natural nucleoside triphosphates, except deoxycytidine triphosphate, can act as donors. The enzyme is induced by some viruses, particularly the herpes simplex virus (HERPESVIRUS HOMINIS). EC 2.7.1.74. Kinase, Deoxycytidine
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D013937 Thymidine Kinase An enzyme that catalyzes the conversion of ATP and thymidine to ADP and thymidine 5'-phosphate. Deoxyuridine can also act as an acceptor and dGTP as a donor. (From Enzyme Nomenclature, 1992) EC 2.7.1.21. Deoxythymidine Kinase,Deoxypyrimidine Kinase,Kinase, Deoxypyrimidine,Kinase, Deoxythymidine,Kinase, Thymidine
D015215 Zidovudine A dideoxynucleoside compound in which the 3'-hydroxy group on the sugar moiety has been replaced by an azido group. This modification prevents the formation of phosphodiester linkages which are needed for the completion of nucleic acid chains. The compound is a potent inhibitor of HIV replication, acting as a chain-terminator of viral DNA during reverse transcription. It improves immunologic function, partially reverses the HIV-induced neurological dysfunction, and improves certain other clinical abnormalities associated with AIDS. Its principal toxic effect is dose-dependent suppression of bone marrow, resulting in anemia and leukopenia. AZT (Antiviral),Azidothymidine,3'-Azido-2',3'-Dideoxythymidine,3'-Azido-3'-deoxythymidine,AZT Antiviral,AZT, Antiviral,BW A509U,BWA-509U,Retrovir,3' Azido 2',3' Dideoxythymidine,3' Azido 3' deoxythymidine,Antiviral AZT,BWA 509U,BWA509U
D015224 Dideoxynucleosides Nucleosides that have two hydroxy groups removed from the sugar moiety. The majority of these compounds have broad-spectrum antiretroviral activity due to their action as antimetabolites. The nucleosides are phosphorylated intracellularly to their 5'-triphosphates and act as chain-terminating inhibitors of viral reverse transcription. 2',3'-Dideoxynucleosides,Dideoxyribonucleosides,ddNus,2',3' Dideoxynucleosides
D015497 HIV-1 The type species of LENTIVIRUS and the etiologic agent of AIDS. It is characterized by its cytopathic effect and affinity for the T4-lymphocyte. Human immunodeficiency virus 1,HIV-I,Human Immunodeficiency Virus Type 1,Immunodeficiency Virus Type 1, Human

Related Publications

W Y Gao, and R Agbaria, and J S Driscoll, and H Mitsuya
January 2000, Antimicrobial agents and chemotherapy,
W Y Gao, and R Agbaria, and J S Driscoll, and H Mitsuya
January 1991, Verhandelingen - Koninklijke Academie voor Geneeskunde van Belgie,
W Y Gao, and R Agbaria, and J S Driscoll, and H Mitsuya
September 1995, Biochemical pharmacology,
W Y Gao, and R Agbaria, and J S Driscoll, and H Mitsuya
January 2017, Medicinal chemistry research : an international journal for rapid communications on design and mechanisms of action of biologically active agents,
W Y Gao, and R Agbaria, and J S Driscoll, and H Mitsuya
May 2007, Antimicrobial agents and chemotherapy,
W Y Gao, and R Agbaria, and J S Driscoll, and H Mitsuya
January 1991, Verhandelingen - Koninklijke Academie voor Geneeskunde van Belgie,
W Y Gao, and R Agbaria, and J S Driscoll, and H Mitsuya
January 1992, Biochemical pharmacology,
Copied contents to your clipboard!