Dissociation between activation of Raf-1 kinase and the 42-kDa mitogen-activated protein kinase/90-kDa S6 kinase (MAPK/RSK) cascade in the insulin/Ras pathway of adipocytic differentiation of 3T3 L1 cells. 1994

A Porras, and K Muszynski, and U R Rapp, and E Santos
Laboratory of Cellular and Molecular Biology, NCI, National Institutes of Health, Bethesda, Maryland 20892.

Insulin treatment of untransfected 3T3 L1 cells quickly induced activation of a cytosolic 42-kDa mitogen-activated protein kinase (MAPK) and a 90-kDa S6 kinase (RSK). The activation of these cytosolic kinases was also mimicked by Ras expression (in the absence of insulin) in the same cells transfected with inducible ras oncogenes. Furthermore, insulin-induced activation of MAPK and RSK could be blocked by expression of a transfected inducible dominant negative Ras mutant (Asn-17). These results indicate that Ras proteins are obligatory intermediates in the activation of the cytosolic MAPK/RSK cascade by insulin. Insulin treatment of 3T3 L1 cells or expression of transfected ras oncogenes resulted also in hyperphosphorylation of cellular Raf-1. Insulin-induced Raf hyperphosphorylation was inhibited by expression of an inducible dominant negative Ras mutant (Asn-17). We also showed that expression of transfected raf oncogenes induces adipocytic differentiation, as detected by expression of the specific adipocytic marker aP2. In addition, insulin-induced differentiation was significantly blocked by expression of a dominant negative raf mutant. Interestingly, however, the expression of transfected raf oncogenes did not induce MAPK or RSK activation, and the insulin-induced activation of these kinases was not blocked by expression of transfected dominant negative raf mutants. These results are consistent with Raf kinases acting downstream of Ras, but not upstream of MAPK and RSK in insulin-signaling pathways leading to 3T3 L1 differentiation.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011505 Protein-Tyrosine Kinases Protein kinases that catalyze the PHOSPHORYLATION of TYROSINE residues in proteins with ATP or other nucleotides as phosphate donors. Tyrosine Protein Kinase,Tyrosine-Specific Protein Kinase,Protein-Tyrosine Kinase,Tyrosine Kinase,Tyrosine Protein Kinases,Tyrosine-Specific Protein Kinases,Tyrosylprotein Kinase,Kinase, Protein-Tyrosine,Kinase, Tyrosine,Kinase, Tyrosine Protein,Kinase, Tyrosine-Specific Protein,Kinase, Tyrosylprotein,Kinases, Protein-Tyrosine,Kinases, Tyrosine Protein,Kinases, Tyrosine-Specific Protein,Protein Kinase, Tyrosine-Specific,Protein Kinases, Tyrosine,Protein Kinases, Tyrosine-Specific,Protein Tyrosine Kinase,Protein Tyrosine Kinases,Tyrosine Specific Protein Kinase,Tyrosine Specific Protein Kinases
D011518 Proto-Oncogene Proteins Products of proto-oncogenes. Normally they do not have oncogenic or transforming properties, but are involved in the regulation or differentiation of cell growth. They often have protein kinase activity. Cellular Proto-Oncogene Proteins,c-onc Proteins,Proto Oncogene Proteins, Cellular,Proto-Oncogene Products, Cellular,Cellular Proto Oncogene Proteins,Cellular Proto-Oncogene Products,Proto Oncogene Products, Cellular,Proto Oncogene Proteins,Proto-Oncogene Proteins, Cellular,c onc Proteins
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014162 Transfection The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES. Transfections
D015689 Oncogene Protein p21(ras) Transforming protein encoded by ras oncogenes. Point mutations in the cellular ras gene (c-ras) can also result in a mutant p21 protein that can transform mammalian cells. Oncogene protein p21(ras) has been directly implicated in human neoplasms, perhaps accounting for as much as 15-20% of all human tumors. This enzyme was formerly listed as EC 3.6.1.47. p21(v-Ha-ras),p21(v-Ki-ras),ras Oncogene Protein p21,p21 Transforming Viral Protein,p21 v-H-ras,p21 v-Ha-ras,p21 v-Ki-ras,p21 v-ras,p21(v-H-ras),p21(v-K-ras),ras Oncogene Product p21,ras Oncogene p21 Product,p21 v H ras,p21 v Ha ras,p21 v Ki ras,p21 v ras,v-H-ras, p21,v-Ha-ras, p21,v-Ki-ras, p21,v-ras, p21
D016475 3T3 Cells Cell lines whose original growing procedure consisted being transferred (T) every 3 days and plated at 300,000 cells per plate (J Cell Biol 17:299-313, 1963). Lines have been developed using several different strains of mice. Tissues are usually fibroblasts derived from mouse embryos but other types and sources have been developed as well. The 3T3 lines are valuable in vitro host systems for oncogenic virus transformation studies, since 3T3 cells possess a high sensitivity to CONTACT INHIBITION. 3T3 Cell,Cell, 3T3,Cells, 3T3

Related Publications

A Porras, and K Muszynski, and U R Rapp, and E Santos
March 1996, International journal of obesity and related metabolic disorders : journal of the International Association for the Study of Obesity,
A Porras, and K Muszynski, and U R Rapp, and E Santos
October 1997, Molecular and cellular biology,
A Porras, and K Muszynski, and U R Rapp, and E Santos
November 1996, The Journal of biological chemistry,
A Porras, and K Muszynski, and U R Rapp, and E Santos
May 1995, Biochemical and biophysical research communications,
A Porras, and K Muszynski, and U R Rapp, and E Santos
July 2000, Proceedings of the National Academy of Sciences of the United States of America,
A Porras, and K Muszynski, and U R Rapp, and E Santos
June 1993, Proceedings of the National Academy of Sciences of the United States of America,
A Porras, and K Muszynski, and U R Rapp, and E Santos
June 1996, The Journal of biological chemistry,
A Porras, and K Muszynski, and U R Rapp, and E Santos
September 1995, The Journal of biological chemistry,
Copied contents to your clipboard!