Immunohistochemical localization of calbindin-D28K and calretinin in the lamprey retina. 1994

N Dalil-Thiney, and R Pochet, and C Versaux-Botteri, and N Vesselkin, and J Repérant, and J Nguyen-Legros
Laboratoire d'Anatomie Comparée, Muséum National d'Histoire Naturelle, Paris, France.

Calbindin-D28K and calretinin are homologous cytosolic calcium binding proteins localized in many retinal neurons from different species. In this report, location of cells immunoreactive to both proteins was investigated in the retina of the lamprey, Lampetra fluviatilis. This organism constitutes one of the older representative vertebrates and possesses a peculiar organization, probably unique: two-thirds of the ganglion cells are in the classical amacrine cell layer and the nerve fiber layer is located in the scleral part of the inner plexiform layer. Calbindin-like immunoreactivity was demonstrated in large bipolar cells and in cell bodies located in the inner retina. Although the distinction between labelled ganglion cells and labelled amacrine cells was rendered difficult, we hypothesized that the majority of calbindin-immunoreactive cells observed in the inner retina are ganglion cells, because of the high number of labelled fibers in the nerve fiber layer. Calretinin-like immunoreactivity was detected in both large and small bipolar cells, and also in cells located in the inner retina. Since few calretinin-immunoreactive fibers were observed in the nerve fiber layer, we assume that the latter category of cells are amacrine cells. Horizontal cells were both negative for calbindin and calretin-like immunoreactivities. Calbindin and calretinin, which are present in cones from many species, could not be detected in the photoreceptor layer favouring the rod-dominated lamprey retina. Although their distribution differs from those observed in most vertebrates, the present results indicate the good conservation of both calcium binding proteins in the retina during the vertebrate evolution.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D007798 Lampreys Common name for the only family (Petromyzontidae) of eellike fish in the order Petromyzontiformes. They are jawless but have a sucking mouth with horny teeth. Eels, Lamprey,Petromyzontidae,Petromyzontiformes,Eel, Lamprey,Lamprey,Lamprey Eel,Lamprey Eels
D009412 Nerve Fibers Slender processes of NEURONS, including the AXONS and their glial envelopes (MYELIN SHEATH). Nerve fibers conduct nerve impulses to and from the CENTRAL NERVOUS SYSTEM. Cerebellar Mossy Fibers,Mossy Fibers, Cerebellar,Cerebellar Mossy Fiber,Mossy Fiber, Cerebellar,Nerve Fiber
D012160 Retina The ten-layered nervous tissue membrane of the eye. It is continuous with the OPTIC NERVE and receives images of external objects and transmits visual impulses to the brain. Its outer surface is in contact with the CHOROID and the inner surface with the VITREOUS BODY. The outer-most layer is pigmented, whereas the inner nine layers are transparent. Ora Serrata
D005136 Eye Proteins PROTEINS derived from TISSUES of the EYE. Proteins, Eye
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012165 Retinal Ganglion Cells Neurons of the innermost layer of the retina, the internal plexiform layer. They are of variable sizes and shapes, and their axons project via the OPTIC NERVE to the brain. A small subset of these cells act as photoreceptors with projections to the SUPRACHIASMATIC NUCLEUS, the center for regulating CIRCADIAN RHYTHM. Cell, Retinal Ganglion,Cells, Retinal Ganglion,Ganglion Cell, Retinal,Ganglion Cells, Retinal,Retinal Ganglion Cell
D017948 Retinal Rod Photoreceptor Cells Photosensitive afferent neurons located in the peripheral retina, with their density increases radially away from the FOVEA CENTRALIS. Being much more sensitive to light than the RETINAL CONE CELLS, the rod cells are responsible for twilight vision (at scotopic intensities) as well as peripheral vision, but provide no color discrimination. Photoreceptors, Rod,Retinal Rod Cells,Rod Photoreceptors,Rods (Retina),Retinal Rod,Retinal Rod Cell,Retinal Rod Photoreceptor,Retinal Rod Photoreceptors,Rod Photoreceptor Cells,Cell, Retinal Rod,Cell, Rod Photoreceptor,Cells, Retinal Rod,Cells, Rod Photoreceptor,Photoreceptor Cell, Rod,Photoreceptor Cells, Rod,Photoreceptor, Retinal Rod,Photoreceptor, Rod,Photoreceptors, Retinal Rod,Retinal Rods,Rod (Retina),Rod Cell, Retinal,Rod Cells, Retinal,Rod Photoreceptor,Rod Photoreceptor Cell,Rod Photoreceptor, Retinal,Rod Photoreceptors, Retinal,Rod, Retinal,Rods, Retinal
D017949 Retinal Cone Photoreceptor Cells Photosensitive afferent neurons located primarily within the FOVEA CENTRALIS of the MACULA LUTEA. There are three major types of cone cells (red, blue, and green) whose photopigments have different spectral sensitivity curves. Retinal cone cells operate in daylight vision (at photopic intensities) providing color recognition and central visual acuity. Cone Photoreceptors,Cones (Retina),Cone Photoreceptor Cells,Photoreceptors, Cone,Retinal Cone,Retinal Cone Cells,Retinal Cone Photoreceptors,Cell, Cone Photoreceptor,Cell, Retinal Cone,Cells, Cone Photoreceptor,Cells, Retinal Cone,Cone (Retina),Cone Cell, Retinal,Cone Cells, Retinal,Cone Photoreceptor,Cone Photoreceptor Cell,Cone Photoreceptor, Retinal,Cone Photoreceptors, Retinal,Cone, Retinal,Cones, Retinal,Photoreceptor Cell, Cone,Photoreceptor Cells, Cone,Photoreceptor, Cone,Photoreceptor, Retinal Cone,Photoreceptors, Retinal Cone,Retinal Cone Cell,Retinal Cone Photoreceptor,Retinal Cones
D064026 Calbindins Calcium-binding proteins that are found in DISTAL KIDNEY TUBULES, INTESTINES, BRAIN, and other tissues where they bind, buffer and transport cytoplasmic calcium. Calbindins possess a variable number of EF-HAND MOTIFS which contain calcium-binding sites. Some isoforms are regulated by VITAMIN D. Calbindin

Related Publications

N Dalil-Thiney, and R Pochet, and C Versaux-Botteri, and N Vesselkin, and J Repérant, and J Nguyen-Legros
January 2010, Brain, behavior and evolution,
N Dalil-Thiney, and R Pochet, and C Versaux-Botteri, and N Vesselkin, and J Repérant, and J Nguyen-Legros
February 2006, The Journal of comparative neurology,
N Dalil-Thiney, and R Pochet, and C Versaux-Botteri, and N Vesselkin, and J Repérant, and J Nguyen-Legros
August 2009, The Journal of comparative neurology,
N Dalil-Thiney, and R Pochet, and C Versaux-Botteri, and N Vesselkin, and J Repérant, and J Nguyen-Legros
January 2017, Cells, tissues, organs,
N Dalil-Thiney, and R Pochet, and C Versaux-Botteri, and N Vesselkin, and J Repérant, and J Nguyen-Legros
March 1995, Experimental eye research,
N Dalil-Thiney, and R Pochet, and C Versaux-Botteri, and N Vesselkin, and J Repérant, and J Nguyen-Legros
July 1992, Brain research,
N Dalil-Thiney, and R Pochet, and C Versaux-Botteri, and N Vesselkin, and J Repérant, and J Nguyen-Legros
January 2006, Brain research,
N Dalil-Thiney, and R Pochet, and C Versaux-Botteri, and N Vesselkin, and J Repérant, and J Nguyen-Legros
December 1992, Neuroscience,
N Dalil-Thiney, and R Pochet, and C Versaux-Botteri, and N Vesselkin, and J Repérant, and J Nguyen-Legros
June 2014, Acta histochemica et cytochemica,
N Dalil-Thiney, and R Pochet, and C Versaux-Botteri, and N Vesselkin, and J Repérant, and J Nguyen-Legros
July 1990, Visual neuroscience,
Copied contents to your clipboard!