Molecular weight of low molecular weight heparins by 13C nuclear magnetic resonance spectroscopy. 1994

U R Desai, and R J Linhardt
College of Pharmacy, University of Iowa, Iowa City 52242.

Heparin and low molecular weight heparins are polydisperse polysaccharides with a degree of polymerization ranging from 4 to approximately 40. The determination of their average molecular weights has traditionally relied on size exclusion chromatography involving the use of oligosaccharides of known size and molecular weight as standards. 13C NMR spectroscopy is applied for the first time to obtain the molecular weights of low molecular weight heparins. The signal intensities of the reducing end and internal anomeric carbons, having distinctive chemical shifts in the 13C NMR spectrum, are measured to determine the molecular weight. Compared to techniques utilizing broad band decoupling or selective decoupling of anomeric protons, distortionless enhancement polarization transfer pulse sequence gave better quantitation of signal intensities of anomeric carbons. Molecular weight was calculated from the calibrated ratio of signal intensities of the anomeric carbons of reducing end groups and internal residues, and the disaccharide compositional analysis. The calibrated signal intensity ratio is determined using the T1 relaxation rates of anomeric carbons of model oligosaccharides. The disaccharide composition of low molecular weight-heparins is obtained using capillary electrophoresis. Signal averaging over 40,000-90,000 transients, requiring a total of 12-18 h on a 360-MHz NMR spectrometer was adequate to measure molecular weights in the range of 3000-7000. The measured molecular weights of twelve low molecular weight heparins, analyzed by this 13C NMR spectroscopic technique, correlated well with the number average molecular weights obtained using high performance-gel permeation chromatography and gradient polyacrylamide gel electrophoresis. In addition to establishing the number average molecular weight, the 13C NMR spectra helped distinguish the structural properties of different commercially prepared low molecular weight heparins.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D009844 Oligosaccharides Carbohydrates consisting of between two (DISACCHARIDES) and ten MONOSACCHARIDES connected by either an alpha- or beta-glycosidic link. They are found throughout nature in both the free and bound form. Oligosaccharide
D002240 Carbohydrate Sequence The sequence of carbohydrates within POLYSACCHARIDES; GLYCOPROTEINS; and GLYCOLIPIDS. Carbohydrate Sequences,Sequence, Carbohydrate,Sequences, Carbohydrate
D002247 Carbon Isotopes Stable carbon atoms that have the same atomic number as the element carbon but differ in atomic weight. C-13 is a stable carbon isotope. Carbon Isotope,Isotope, Carbon,Isotopes, Carbon
D002850 Chromatography, Gel Chromatography on non-ionic gels without regard to the mechanism of solute discrimination. Chromatography, Exclusion,Chromatography, Gel Permeation,Chromatography, Molecular Sieve,Gel Filtration,Gel Filtration Chromatography,Chromatography, Size Exclusion,Exclusion Chromatography,Gel Chromatography,Gel Permeation Chromatography,Molecular Sieve Chromatography,Chromatography, Gel Filtration,Exclusion Chromatography, Size,Filtration Chromatography, Gel,Filtration, Gel,Sieve Chromatography, Molecular,Size Exclusion Chromatography
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D004187 Disaccharides Oligosaccharides containing two monosaccharide units linked by a glycosidic bond. Disaccharide
D006495 Heparin, Low-Molecular-Weight Heparin fractions with a molecular weight usually between 4000 and 6000 kD. These low-molecular-weight fractions are effective antithrombotic agents. Their administration reduces the risk of hemorrhage, they have a longer half-life, and their platelet interactions are reduced in comparison to unfractionated heparin. They also provide an effective prophylaxis against postoperative major pulmonary embolism. LMWH,Low-Molecular-Weight Heparin,Low Molecular Weight Heparin,Heparin, Low Molecular Weight

Related Publications

U R Desai, and R J Linhardt
July 2007, Seminars in thrombosis and hemostasis,
U R Desai, and R J Linhardt
June 1967, Journal of the American Chemical Society,
U R Desai, and R J Linhardt
January 2004, Annual review of biochemistry,
U R Desai, and R J Linhardt
January 1977, Journal of the Chemical Society. Perkin transactions 1,
U R Desai, and R J Linhardt
January 1991, Essays in biochemistry,
U R Desai, and R J Linhardt
May 1995, Solid state nuclear magnetic resonance,
Copied contents to your clipboard!