Strong-field and integral spin-ligand complexes of the cytochrome bo quinol oxidase in Escherichia coli membrane preparations. 1994

M W Calhoun, and R B Gennis, and W J Ingledew, and J C Salerno
School of Chemical Sciences, University of Illinois at Urbana-Champaign 61801.

The cytochrome bo-type terminal oxidase of Escherichia coli is an analogue of mammalian aa3-type cytochrome c oxidase. The catalytic core of both enzymes is a binuclear site containing a penta-coordinate heme (heme o or a3) and copper (CuB). Herein we report on UV-visible and magnetic properties of ligand complexes of the binuclear site of cytochrome bo. Cyanide, sulfide, and azide react with the Fe(3+)-Cu+ center to give EPR-detectable low-spin complexes, analogous to those formed by cytochrome aa3. Analyses of the ligand fields of these complexes indicate that heme o has a single axial histidine ligand. Cyanide and azide react with the Fe(3+)-Cu2+ center to yield forms observable via UV-visible spectroscopy but not EPR. With formate and fluoride, cytochrome bo forms integral spin complexes similar to those of cytochrome aa3. These complexes have UV-visible characteristics of high-spin species, but EPR spectra show features which appear to correspond to transitions within an integral spin multiplet. Cytochrome bo forms another integral spin complex with azide and NO which is nearly identical to the azide-NO species in cytochrome aa3. This suggests that the binuclear centers of the two enzymes are quite similar.

UI MeSH Term Description Entries
D008024 Ligands A molecule that binds to another molecule, used especially to refer to a small molecule that binds specifically to a larger molecule, e.g., an antigen binding to an antibody, a hormone or neurotransmitter binding to a receptor, or a substrate or allosteric effector binding to an enzyme. Ligands are also molecules that donate or accept a pair of electrons to form a coordinate covalent bond with the central metal atom of a coordination complex. (From Dorland, 27th ed) Ligand
D008670 Metals Electropositive chemical elements characterized by ductility, malleability, luster, and conductance of heat and electricity. They can replace the hydrogen of an acid and form bases with hydroxyl radicals. (Grant & Hackh's Chemical Dictionary, 5th ed) Metal
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D003576 Electron Transport Complex IV A multisubunit enzyme complex containing CYTOCHROME A GROUP; CYTOCHROME A3; two copper atoms; and 13 different protein subunits. It is the terminal oxidase complex of the RESPIRATORY CHAIN and collects electrons that are transferred from the reduced CYTOCHROME C GROUP and donates them to molecular OXYGEN, which is then reduced to water. The redox reaction is simultaneously coupled to the transport of PROTONS across the inner mitochondrial membrane. Cytochrome Oxidase,Cytochrome aa3,Cytochrome-c Oxidase,Cytochrome Oxidase Subunit III,Cytochrome a,a3,Cytochrome c Oxidase Subunit VIa,Cytochrome-c Oxidase (Complex IV),Cytochrome-c Oxidase Subunit III,Cytochrome-c Oxidase Subunit IV,Ferrocytochrome c Oxygen Oxidoreductase,Heme aa3 Cytochrome Oxidase,Pre-CTOX p25,Signal Peptide p25-Subunit IV Cytochrome Oxidase,Subunit III, Cytochrome Oxidase,p25 Presequence Peptide-Cytochrome Oxidase,Cytochrome c Oxidase,Cytochrome c Oxidase Subunit III,Cytochrome c Oxidase Subunit IV,Oxidase, Cytochrome,Oxidase, Cytochrome-c,Signal Peptide p25 Subunit IV Cytochrome Oxidase,p25 Presequence Peptide Cytochrome Oxidase
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D006418 Heme The color-furnishing portion of hemoglobin. It is found free in tissues and as the prosthetic group in many hemeproteins. Ferroprotoporphyrin,Protoheme,Haem,Heme b,Protoheme IX

Related Publications

M W Calhoun, and R B Gennis, and W J Ingledew, and J C Salerno
February 1995, European journal of biochemistry,
M W Calhoun, and R B Gennis, and W J Ingledew, and J C Salerno
March 1993, European journal of biochemistry,
M W Calhoun, and R B Gennis, and W J Ingledew, and J C Salerno
March 1990, The Journal of biological chemistry,
M W Calhoun, and R B Gennis, and W J Ingledew, and J C Salerno
July 2009, Bioscience, biotechnology, and biochemistry,
M W Calhoun, and R B Gennis, and W J Ingledew, and J C Salerno
November 1993, FEBS letters,
M W Calhoun, and R B Gennis, and W J Ingledew, and J C Salerno
March 1993, Biochimica et biophysica acta,
M W Calhoun, and R B Gennis, and W J Ingledew, and J C Salerno
February 1993, Biochimica et biophysica acta,
M W Calhoun, and R B Gennis, and W J Ingledew, and J C Salerno
August 1997, Journal of biochemistry,
Copied contents to your clipboard!