Determination of the catalytic site of creatine kinase by site-directed mutagenesis. 1994

L Lin, and M B Perryman, and D Friedman, and R Roberts, and T S Ma
Methodist Hospital, Houston, TX.

Site-directed mutagenesis was used to alter the amino-acid residues at the presumed catalytic site Cys-283 and ATP binding site Asp-340 of human creatine kinase B cDNA. In addition, a highly conserved arginine residue, Arg-292, was also mutated. Transfection of 0.1 to 1 microgram of recombinant plasmid into COS cells produced increasing creatine kinase activity in the cell lysate. The expression of mutant Cys283-Tyr and Cys283-Ser resulted in complete abolition of homodimer BB isoform enzymatic activity without alteration of the capacity for dimerization. Expression of mutants Arg292-His, Arg292-Leu, and Arg292-Gln produced non-functional homodimers, whereas expression of mutant Arg292-Lys produced a homodimer with enzymatic activity that was 42% of the enzymatic activity of the wild type. Expression of the Asp340-Glu mutant creatine kinase did not alter enzyme activity as compared to the wild type. Following heterodimerization, there was inhibition of the normal subunit by the mutant subunit, for both the BB and the MB dimer. The results showed residues Cys-283 and Arg-292 are essential for enzyme catalysis. The best fit model for the dimer is one in which there is close apposition of the two catalytic sites. The interaction of the individual subunits during dimerization provides a molecular approach for dominant negative modulation of the creatine kinase isozyme system in future genetic manipulative experiments.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D003402 Creatine Kinase A transferase that catalyzes formation of PHOSPHOCREATINE from ATP + CREATINE. The reaction stores ATP energy as phosphocreatine. Three cytoplasmic ISOENZYMES have been identified in human tissues: the MM type from SKELETAL MUSCLE, the MB type from myocardial tissue and the BB type from nervous tissue as well as a mitochondrial isoenzyme. Macro-creatine kinase refers to creatine kinase complexed with other serum proteins. Creatine Phosphokinase,ADP Phosphocreatine Phosphotransferase,ATP Creatine Phosphotransferase,Macro-Creatine Kinase,Creatine Phosphotransferase, ATP,Kinase, Creatine,Macro Creatine Kinase,Phosphocreatine Phosphotransferase, ADP,Phosphokinase, Creatine,Phosphotransferase, ADP Phosphocreatine,Phosphotransferase, ATP Creatine
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D016297 Mutagenesis, Site-Directed Genetically engineered MUTAGENESIS at a specific site in the DNA molecule that introduces a base substitution, or an insertion or deletion. Mutagenesis, Oligonucleotide-Directed,Mutagenesis, Site-Specific,Oligonucleotide-Directed Mutagenesis,Site-Directed Mutagenesis,Site-Specific Mutagenesis,Mutageneses, Oligonucleotide-Directed,Mutageneses, Site-Directed,Mutageneses, Site-Specific,Mutagenesis, Oligonucleotide Directed,Mutagenesis, Site Directed,Mutagenesis, Site Specific,Oligonucleotide Directed Mutagenesis,Oligonucleotide-Directed Mutageneses,Site Directed Mutagenesis,Site Specific Mutagenesis,Site-Directed Mutageneses,Site-Specific Mutageneses
D018076 DNA, Complementary Single-stranded complementary DNA synthesized from an RNA template by the action of RNA-dependent DNA polymerase. cDNA (i.e., complementary DNA, not circular DNA, not C-DNA) is used in a variety of molecular cloning experiments as well as serving as a specific hybridization probe. Complementary DNA,cDNA,cDNA Probes,Probes, cDNA

Related Publications

L Lin, and M B Perryman, and D Friedman, and R Roberts, and T S Ma
January 1987, The Biochemical journal,
L Lin, and M B Perryman, and D Friedman, and R Roberts, and T S Ma
March 2022, Bioprocess and biosystems engineering,
L Lin, and M B Perryman, and D Friedman, and R Roberts, and T S Ma
September 1989, Science (New York, N.Y.),
L Lin, and M B Perryman, and D Friedman, and R Roberts, and T S Ma
September 2022, Biotechnology letters,
L Lin, and M B Perryman, and D Friedman, and R Roberts, and T S Ma
May 1989, Protein engineering,
L Lin, and M B Perryman, and D Friedman, and R Roberts, and T S Ma
February 2003, European journal of biochemistry,
L Lin, and M B Perryman, and D Friedman, and R Roberts, and T S Ma
January 1995, Methods in enzymology,
L Lin, and M B Perryman, and D Friedman, and R Roberts, and T S Ma
May 1993, Biochimica et biophysica acta,
L Lin, and M B Perryman, and D Friedman, and R Roberts, and T S Ma
December 1992, The International journal of biochemistry,
L Lin, and M B Perryman, and D Friedman, and R Roberts, and T S Ma
December 1992, FEMS microbiology letters,
Copied contents to your clipboard!