Kringle solution structures via NMR: two-dimensional 1H-NMR analysis of horse plasminogen kringle 4. 1994

M Cox, and J Schaller, and R Boelens, and R Kaptein, and E Rickli, and M Llinás
Bijvoet Centre for Biomolecular Research, University of Utrecht, The Netherlands.

The kringle 4 domain of equine plasminogen (ePgn/K4), a close variant of the human homolog (hPgn/K4), contains residues, such as Trp32, which also appear in human apolipoprotein(a) kringle 4-type modules. The ePgn/K4 was investigated as a complex with epsilon-aminocaproic acid, an antifibrinolytic drug, by two-dimensional 1H-NMR spectroscopy at 500 MHz. Secondary structure elements were recognized from sequential medium and long-range dipolar (proton Overhauser) interactions, as well as from the identification of resonances originating from backbone amide protons with slow 1H-2H exchange in 2H2O. Antiparallel beta-sheets, consisting of strands 52-53, 61-65 and 71-75, were identified. Additionally, the segments 14-16 and 20-22 were found to assume characteristic interstrand antiparallel (beta-sheet-like) H-bond pairing. Four type I turns could be identified in strands 6-9, 16-19, 24-27 and 67-70. Ten structures were generated using distance geometry methods, followed by dynamic simulated annealing calculations. The root mean squares deviation of the distances was 2.79 A for all atoms and 1.81 A for backbone atoms only. Hydrogen bridges, involving side chain hydroxyl groups, were identified for Thr16 and Thr65. As observed for the hPgn/K4, the three-dimensional structure of the ePgn/K4 is mainly defined by two antiparallel beta-sheets, 14-16/20-22 and 62-66/71-75, which are oriented perpendicular to each other. Adjacent to these is a hydrophobic pocket, formed by Trp62, Tyr64, Trp72 and Phe74, whose side chains contribute a lipophilic component to the exposed lysine binding site surface. In contrast to the Trp25, Trp62 and Trp72 residues, conserved in the human and equine homologs, the spectrum of the Trp32 side chain reveals an unrestrained, solvent-exposed indole ring.

UI MeSH Term Description Entries
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D010958 Plasminogen Precursor of plasmin (FIBRINOLYSIN). It is a single-chain beta-globulin of molecular weight 80-90,000 found mostly in association with fibrinogen in plasma; plasminogen activators change it to fibrinolysin. It is used in wound debriding and has been investigated as a thrombolytic agent. Profibrinolysin,Glu-Plasminogen,Glutamic Acid 1-Plasminogen,Glutamyl Plasminogen,1-Plasminogen, Glutamic Acid,Glu Plasminogen,Glutamic Acid 1 Plasminogen,Plasminogen, Glutamyl
D006736 Horses Large, hoofed mammals of the family EQUIDAE. Horses are active day and night with most of the day spent seeking and consuming food. Feeding peaks occur in the early morning and late afternoon, and there are several daily periods of rest. Equus caballus,Equus przewalskii,Horse, Domestic,Domestic Horse,Domestic Horses,Horse,Horses, Domestic
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006860 Hydrogen Bonding A low-energy attractive force between hydrogen and another element. It plays a major role in determining the properties of water, proteins, and other compounds. Hydrogen Bonds,Bond, Hydrogen,Hydrogen Bond
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining

Related Publications

M Cox, and J Schaller, and R Boelens, and R Kaptein, and E Rickli, and M Llinás
January 1988, European journal of biochemistry,
M Cox, and J Schaller, and R Boelens, and R Kaptein, and E Rickli, and M Llinás
July 1988, Archives of biochemistry and biophysics,
M Cox, and J Schaller, and R Boelens, and R Kaptein, and E Rickli, and M Llinás
February 1989, Biochemistry,
M Cox, and J Schaller, and R Boelens, and R Kaptein, and E Rickli, and M Llinás
February 1986, Archives of biochemistry and biophysics,
M Cox, and J Schaller, and R Boelens, and R Kaptein, and E Rickli, and M Llinás
May 1994, European journal of biochemistry,
M Cox, and J Schaller, and R Boelens, and R Kaptein, and E Rickli, and M Llinás
August 1988, European journal of biochemistry,
M Cox, and J Schaller, and R Boelens, and R Kaptein, and E Rickli, and M Llinás
January 1988, European journal of biochemistry,
M Cox, and J Schaller, and R Boelens, and R Kaptein, and E Rickli, and M Llinás
September 1986, European journal of biochemistry,
M Cox, and J Schaller, and R Boelens, and R Kaptein, and E Rickli, and M Llinás
December 1986, Biochemistry,
M Cox, and J Schaller, and R Boelens, and R Kaptein, and E Rickli, and M Llinás
December 1986, FEBS letters,
Copied contents to your clipboard!