Cloning and sequence analysis of rhp51+, a Schizosaccharomyces pombe homolog of the Saccharomyces cerevisiae RAD51 gene. 1994

Y K Jang, and Y H Jin, and E M Kim, and F Fabre, and S H Hong, and S D Park
Department of Molecular Biology, Seoul National University, South Korea.

A homology (rhp51+) of the RAD51 gene in Schizosaccharomyces pombe was cloned by screening a Sz. pombe genomic library using the 3'-end of RAD51 from Saccharomyces cerevisiae as a probe. As in S. cerevisiae, the sequence of rhp51+ showed two MluI cell-cycle boxes and a putative DNA damage-responsive element in its upstream region. The open reading frame codes for a 365-amino-acid (aa) polypeptide with an estimated molecular mass of 40,555 Da. The deduced aa sequence shows 27, 66, 75 and 80% identity with Escherichia coli RecA, S. cerevisiae Rad51 and the Rad51 homologs from chicken and humans, respectively. The aa sequence encoded by rhp51+ contains A- and B-type nucleotide-binding consensus sequences, as found in other RAD51 homologs. Northern blot analysis showed that rhp51+ encodes a 1.7-kb transcript. Methyl methanesulfonate treatment increased the level of this transcript three- to fivefold. Southern hybridization analysis suggests that a single copy of rhp51+ exists in the Sz. pombe genome.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011938 Rec A Recombinases A family of recombinases initially identified in BACTERIA. They catalyze the ATP-driven exchange of DNA strands in GENETIC RECOMBINATION. The product of the reaction consists of a duplex and a displaced single-stranded loop, which has the shape of the letter D and is therefore called a D-loop structure. Rec A Protein,RecA Protein,Recombinases, Rec A
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004249 DNA Damage Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS. DNA Injury,DNA Lesion,DNA Lesions,Genotoxic Stress,Stress, Genotoxic,Injury, DNA,DNA Injuries
D004260 DNA Repair The removal of DNA LESIONS and/or restoration of intact DNA strands without BASE PAIR MISMATCHES, intrastrand or interstrand crosslinks, or discontinuities in the DNA sugar-phosphate backbones. DNA Damage Response
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D005656 Fungal Proteins Proteins found in any species of fungus. Fungal Gene Products,Fungal Gene Proteins,Fungal Peptides,Gene Products, Fungal,Yeast Proteins,Gene Proteins, Fungal,Peptides, Fungal,Proteins, Fungal
D005800 Genes, Fungal The functional hereditary units of FUNGI. Fungal Genes,Fungal Gene,Gene, Fungal
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein

Related Publications

Y K Jang, and Y H Jin, and E M Kim, and F Fabre, and S H Hong, and S D Park
March 1994, Molecular and cellular biology,
Y K Jang, and Y H Jin, and E M Kim, and F Fabre, and S H Hong, and S D Park
March 1995, Gene,
Y K Jang, and Y H Jin, and E M Kim, and F Fabre, and S H Hong, and S D Park
October 1996, Mutation research,
Y K Jang, and Y H Jin, and E M Kim, and F Fabre, and S H Hong, and S D Park
May 1986, Journal of bacteriology,
Y K Jang, and Y H Jin, and E M Kim, and F Fabre, and S H Hong, and S D Park
September 1993, Nucleic acids research,
Y K Jang, and Y H Jin, and E M Kim, and F Fabre, and S H Hong, and S D Park
October 1998, Yeast (Chichester, England),
Y K Jang, and Y H Jin, and E M Kim, and F Fabre, and S H Hong, and S D Park
January 2014, Methods in molecular biology (Clifton, N.J.),
Y K Jang, and Y H Jin, and E M Kim, and F Fabre, and S H Hong, and S D Park
March 1985, The EMBO journal,
Y K Jang, and Y H Jin, and E M Kim, and F Fabre, and S H Hong, and S D Park
January 1989, Current genetics,
Y K Jang, and Y H Jin, and E M Kim, and F Fabre, and S H Hong, and S D Park
May 1994, Current genetics,
Copied contents to your clipboard!