Processing of truncated mouse or human rRNA transcribed from ribosomal minigenes transfected into mouse cells. 1994

K V Hadjiolova, and A Normann, and J Cavaillé, and E Soupène, and S Mazan, and A A Hadjiolov, and J P Bachellerie
Laboratoire de Biologie Moléculaire Eucaryote du Centre National de la Recherche Scientifique, Université Paul Sabatier, Toulouse, France.

The processing of pre-rRNA in eukaryotic cells involves a complex pattern of nucleolytic reactions taking place in preribosomes with the participation of several nonribosomal proteins and small nuclear RNAs. The mechanism of these reactions remains largely unknown, mainly because of the absence of faithful in vitro assays for most processing steps. We have developed a pre-rRNA processing system using the transient expression of ribosomal minigenes transfected into cultured mouse cells. Truncated mouse or human rRNA genes are faithfully transcribed under the control of mouse promoter and terminator signals. The fate of these transcripts is analyzed by the use of reporter sequences flanking the rRNA gene inserts. Both mouse and human transcripts, containing the 3' end of 18S rRNA-encoding DNA (rDNA), internal transcribed spacer (ITS) 1, 5.8S rDNA, ITS 2, and the 5' end of 28S rDNA, are processed predominantly to molecules coterminal with the natural mature rRNAs plus minor products corresponding to cleavages within ITS 1 and ITS 2. To delineate cis-acting signals in pre-rRNA processing, we studied series of more truncated human-mouse minigenes. A faithful processing at the 18S rRNA/ITS 1 junction can be observed with transcripts containing only the 60 3'-terminal nucleotides of 18S rRNA and the 533 proximal nucleotides of ITS 1. However, further truncation of 18S rRNA (to 8 nucleotides) or of ITS 1 (to 48 nucleotides) abolishes the cleavage of the transcript. Processing at the ITS 2/28S rRNA junction is observed with truncated transcripts lacking the 5.8S rRNA plus a major part of ITS 2 and containing only 502 nucleotides of 28S rRNA. However, further truncation of the 28S rRNA segment to 217 nucleotides abolishes processing. Minigene transcripts containing most internal sequences of either ITS 1 or ITS 2, but devoid of ITS/mature rRNA junctions, are not processed, suggesting that the cleavages in vivo within either ITS segment are dependent on the presence in cis of mature rRNA sequences. These results show that the major cis signals for pre-rRNA processing at the 18S rRNA/ITS 1 or the ITS2/28S rRNA junction involve solely a limited critical length of the respective mature rRNA and adjacent spacer sequences.

UI MeSH Term Description Entries
D007739 L Cells A cultured line of C3H mouse FIBROBLASTS that do not adhere to one another and do not express CADHERINS. Earle's Strain L Cells,L Cell Line,L Cells (Cell Line),L-Cell Line,L-Cells,L-Cells, Cell Line,L929 Cell Line,L929 Cells,NCTC Clone 929 Cells,NCTC Clone 929 of Strain L Cells,Strain L Cells,Cell Line L-Cell,Cell Line L-Cells,Cell Line, L,Cell Line, L929,Cell Lines, L,Cell, L,Cell, L (Cell Line),Cell, L929,Cell, Strain L,Cells, L,Cells, L (Cell Line),Cells, L929,Cells, Strain L,L Cell,L Cell (Cell Line),L Cell Lines,L Cell, Strain,L Cells, Cell Line,L Cells, Strain,L-Cell,L-Cell Lines,L-Cell, Cell Line,L929 Cell,Strain L Cell
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009838 Oligodeoxyribonucleotides A group of deoxyribonucleotides (up to 12) in which the phosphate residues of each deoxyribonucleotide act as bridges in forming diester linkages between the deoxyribose moieties. Oligodeoxynucleotide,Oligodeoxyribonucleotide,Oligodeoxynucleotides
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D004275 DNA, Ribosomal DNA sequences encoding RIBOSOMAL RNA and the segments of DNA separating the individual ribosomal RNA genes, referred to as RIBOSOMAL SPACER DNA. Ribosomal DNA,rDNA
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012270 Ribosomes Multicomponent ribonucleoprotein structures found in the CYTOPLASM of all cells, and in MITOCHONDRIA, and PLASTIDS. They function in PROTEIN BIOSYNTHESIS via GENETIC TRANSLATION. Ribosome
D012322 RNA Precursors RNA transcripts of the DNA that are in some unfinished stage of post-transcriptional processing (RNA PROCESSING, POST-TRANSCRIPTIONAL) required for function. RNA precursors may undergo several steps of RNA SPLICING during which the phosphodiester bonds at exon-intron boundaries are cleaved and the introns are excised. Consequently a new bond is formed between the ends of the exons. Resulting mature RNAs can then be used; for example, mature mRNA (RNA, MESSENGER) is used as a template for protein production. Precursor RNA,Primary RNA Transcript,RNA, Messenger, Precursors,RNA, Ribosomal, Precursors,RNA, Small Nuclear, Precursors,RNA, Transfer, Precursors,Pre-mRNA,Pre-rRNA,Pre-snRNA,Pre-tRNA,Primary Transcript, RNA,RNA Precursor,mRNA Precursor,rRNA Precursor,snRNA Precursor,tRNA Precursor,Pre mRNA,Pre rRNA,Pre snRNA,Pre tRNA,Precursor, RNA,Precursor, mRNA,Precursor, rRNA,Precursor, snRNA,Precursor, tRNA,Precursors, RNA,RNA Primary Transcript,RNA Transcript, Primary,RNA, Precursor,Transcript, Primary RNA,Transcript, RNA Primary

Related Publications

K V Hadjiolova, and A Normann, and J Cavaillé, and E Soupène, and S Mazan, and A A Hadjiolov, and J P Bachellerie
April 1989, Molecular and cellular biology,
K V Hadjiolova, and A Normann, and J Cavaillé, and E Soupène, and S Mazan, and A A Hadjiolov, and J P Bachellerie
March 1995, European journal of biochemistry,
K V Hadjiolova, and A Normann, and J Cavaillé, and E Soupène, and S Mazan, and A A Hadjiolov, and J P Bachellerie
October 1985, Nucleic acids research,
K V Hadjiolova, and A Normann, and J Cavaillé, and E Soupène, and S Mazan, and A A Hadjiolov, and J P Bachellerie
January 1986, Advances in experimental medicine and biology,
K V Hadjiolova, and A Normann, and J Cavaillé, and E Soupène, and S Mazan, and A A Hadjiolov, and J P Bachellerie
April 1986, Nucleic acids research,
K V Hadjiolova, and A Normann, and J Cavaillé, and E Soupène, and S Mazan, and A A Hadjiolov, and J P Bachellerie
May 1986, Biochemical and biophysical research communications,
K V Hadjiolova, and A Normann, and J Cavaillé, and E Soupène, and S Mazan, and A A Hadjiolov, and J P Bachellerie
July 1977, Chromosoma,
K V Hadjiolova, and A Normann, and J Cavaillé, and E Soupène, and S Mazan, and A A Hadjiolov, and J P Bachellerie
December 2005, Biochemistry,
K V Hadjiolova, and A Normann, and J Cavaillé, and E Soupène, and S Mazan, and A A Hadjiolov, and J P Bachellerie
March 2015, Trends in genetics : TIG,
K V Hadjiolova, and A Normann, and J Cavaillé, and E Soupène, and S Mazan, and A A Hadjiolov, and J P Bachellerie
January 1995, Biochemistry and cell biology = Biochimie et biologie cellulaire,
Copied contents to your clipboard!