Contribution of a slowly inactivating potassium current to the transition to firing of neostriatal spiny projection neurons. 1994

E S Nisenbaum, and Z C Xu, and C J Wilson
Department of Anatomy and Neurobiology, College of Medicine, University of Tennessee, Memphis 38163.

1. Neostriatal spiny projection neurons display a prominent slowly depolarizing (ramp) potential and long latency to spike discharge in response to intracellular current pulses. The contribution of a slowly inactivating A-current (IAs) to this delayed excitation was investigated in a neostriatal slice preparation using current pulse protocols incorporating information based on the known voltage dependence, kinetics, and pharmacological properties of IAs. 2. Depolarizing intracellular current pulses evoked a slowly developing ramp potential that could last for seconds without reaching steady state and continued until either the pulse was terminated or spike threshold was reached. The slope of the ramp potential was dependent on the level of depolarization achieved by the membrane, and the apparent activation threshold for this ramp depolarization was approximately -65 mV. 3. Application of low concentrations of 4-aminopyridine (4-AP, 30-100 microM) or dendrotoxin (DTX, 30 nM), which are known to selectively block IAs, reduced both the slope of the ramp potential and the latency to first spike discharge. As has been described previously, blockade of inward Na+ and Ca2+ currents with tetrodotoxin (TTX, 1 microM) and cadmium (400 microM) also reduced the slope of the ramp depolarization. 4. A conditioning-test pulse protocol was used to examine the voltage dependence of inactivation of the ramp potential and long first spike latency. In the absence of a conditioning pulse, the test pulse evoked a slowly rising ramp potential and a spike with a long latency to discharge. A conditioning depolarization to approximately -60 mV decreased the slope of the ramp potential and the latency to first spike discharge evoked by the test pulse. A conditioning hyperpolarization to potentials below -100 mV, increased first spike latency. Application of a low concentration of 4-AP (100 microM) abolished the influence of prior membrane potential on the slope of the ramp depolarization and the latency to first spike discharge. 5. The kinetics of recovery from inactivation of the 4-AP-sensitive current were studied in the presence of TTX and cadmium by depolarizing cells to approximately -50 mV and then stepping to approximately -90 mV for increasing periods of time (0.5-5.0 s) before delivering a test pulse. The amplitude of the test pulse response decreased as a function of the hyperpolarizing step duration. When the test pulse response amplitudes were plotted against the hyperpolarizing step duration, the points reflected an exponential decay with an average time constant of 2.05 +/- 1.38 (SD) s.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D008297 Male Males
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009498 Neurotoxins Toxic substances from microorganisms, plants or animals that interfere with the functions of the nervous system. Most venoms contain neurotoxic substances. Myotoxins are included in this concept. Alpha-Neurotoxin,Excitatory Neurotoxin,Excitotoxins,Myotoxin,Myotoxins,Neurotoxin,Alpha-Neurotoxins,Excitatory Neurotoxins,Excitotoxin,Alpha Neurotoxin,Alpha Neurotoxins,Neurotoxin, Excitatory,Neurotoxins, Excitatory
D011930 Reaction Time The time from the onset of a stimulus until a response is observed. Response Latency,Response Speed,Response Time,Latency, Response,Reaction Times,Response Latencies,Response Times,Speed, Response,Speeds, Response
D003342 Corpus Striatum Striped GRAY MATTER and WHITE MATTER consisting of the NEOSTRIATUM and paleostriatum (GLOBUS PALLIDUS). It is located in front of and lateral to the THALAMUS in each cerebral hemisphere. The gray substance is made up of the CAUDATE NUCLEUS and the lentiform nucleus (the latter consisting of the GLOBUS PALLIDUS and PUTAMEN). The WHITE MATTER is the INTERNAL CAPSULE. Lenticular Nucleus,Lentiform Nucleus,Lentiform Nuclei,Nucleus Lentiformis,Lentiformis, Nucleus,Nuclei, Lentiform,Nucleus, Lenticular,Nucleus, Lentiform,Striatum, Corpus
D003712 Dendrites Extensions of the nerve cell body. They are short and branched and receive stimuli from other NEURONS. Dendrite
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004546 Elapid Venoms Venoms from snakes of the family Elapidae, including cobras, kraits, mambas, coral, tiger, and Australian snakes. The venoms contain polypeptide toxins of various kinds, cytolytic, hemolytic, and neurotoxic factors, but fewer enzymes than viper or crotalid venoms. Many of the toxins have been characterized. Cobra Venoms,Elapidae Venom,Elapidae Venoms,Naja Venoms,Cobra Venom,Elapid Venom,Hydrophid Venom,Hydrophid Venoms,King Cobra Venom,Naja Venom,Ophiophagus hannah Venom,Sea Snake Venom,Sea Snake Venoms,Venom, Cobra,Venom, Elapid,Venom, Elapidae,Venom, Hydrophid,Venom, King Cobra,Venom, Naja,Venom, Ophiophagus hannah,Venom, Sea Snake,Venoms, Cobra,Venoms, Elapid,Venoms, Elapidae,Venoms, Hydrophid,Venoms, Naja,Venoms, Sea Snake

Related Publications

E S Nisenbaum, and Z C Xu, and C J Wilson
January 1991, Neuroscience letters,
E S Nisenbaum, and Z C Xu, and C J Wilson
January 1994, Experimental brain research,
E S Nisenbaum, and Z C Xu, and C J Wilson
June 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience,
E S Nisenbaum, and Z C Xu, and C J Wilson
September 2016, The Journal of neuroscience : the official journal of the Society for Neuroscience,
E S Nisenbaum, and Z C Xu, and C J Wilson
June 2007, The Journal of physiology,
E S Nisenbaum, and Z C Xu, and C J Wilson
March 1999, Journal of neurophysiology,
E S Nisenbaum, and Z C Xu, and C J Wilson
October 1991, Journal of neurophysiology,
Copied contents to your clipboard!