Acetylcholine-sensitive muscarinic K+ channels in mammalian ventricular myocytes. 1994

S Koumi, and J A Wasserstrom
Reingold ECG Center, Department of Medicine, Northwestern University School of Medicine, Chicago, Illinois 60611.

Acetylcholine (ACh) is known to increase K+ conductance in the atrium and in pacemaker tissues in the heart. This effect has not been well defined in mammalian ventricular tissues. We have identified and characterized the ACh-sensitive muscarinic K+ channel [IK(ACh)] activity in isolated human, cat, and guinea pig ventricular myocytes using the patch-clamp technique. Application of ACh increased whole cell membrane current in human ventricular myocytes. Current-voltage relationship of the ACh-induced current in ventricle exhibited inward-rectification whose slope conductance was smaller than that in atrium. In single-channel recording from cell-attached patches, IK(ACh) activity was observed when ACh was included in the solution. The channel exhibited a slope conductance of 43 +/- 2 pS. Open times were distributed according to a single exponential function with mean open lifetime of 1.8 +/- 0.3 ms. The channel had conductance and kinetic characteristics similar to human atrial IK(ACh), which had a slope conductance of 43 +/- 3 pS and mean open lifetime of 1.6 +/- 0.3 ms. However, concentration of ACh at half-maximal stimulation (KD) of the channel in ventricle was greater (KD = 0.13 microM) than that in atrium (KD = 0.03 microM). Adenosine caused activation of the same K+ channel. After formation of an excised inside-out patch, channel activity disappeared. Application of GTP (100 microM) or GTP gamma S (100 microM) to the solution caused reactivation of the channel. When myocytes were preincubated with pertussis toxin (PTX), ACh failed to activate these channels, indicating that the PTX-sensitive G protein, Gi, is essential for activation of IK(ACh). IK(ACh) channel activity was also found in cat and guinea pig ventricular myocytes. We conclude that ACh directly activates the IK(ACh) in mammalian ventricular myocytes via Gi in a fashion almost identical to atrial myocytes.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D009928 Organ Specificity Characteristic restricted to a particular organ of the body, such as a cell type, metabolic response or expression of a particular protein or antigen. Tissue Specificity,Organ Specificities,Specificities, Organ,Specificities, Tissue,Specificity, Organ,Specificity, Tissue,Tissue Specificities
D011976 Receptors, Muscarinic One of the two major classes of cholinergic receptors. Muscarinic receptors were originally defined by their preference for MUSCARINE over NICOTINE. There are several subtypes (usually M1, M2, M3....) that are characterized by their cellular actions, pharmacology, and molecular biology. Muscarinic Acetylcholine Receptors,Muscarinic Receptors,Muscarinic Acetylcholine Receptor,Muscarinic Receptor,Acetylcholine Receptor, Muscarinic,Acetylcholine Receptors, Muscarinic,Receptor, Muscarinic,Receptor, Muscarinic Acetylcholine,Receptors, Muscarinic Acetylcholine
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D002469 Cell Separation Techniques for separating distinct populations of cells. Cell Isolation,Cell Segregation,Isolation, Cell,Cell Isolations,Cell Segregations,Cell Separations,Isolations, Cell,Segregation, Cell,Segregations, Cell,Separation, Cell,Separations, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D006160 Guanosine Triphosphate Guanosine 5'-(tetrahydrogen triphosphate). A guanine nucleotide containing three phosphate groups esterified to the sugar moiety. GTP,Triphosphate, Guanosine
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D006321 Heart The hollow, muscular organ that maintains the circulation of the blood. Hearts

Related Publications

S Koumi, and J A Wasserstrom
November 1989, The American journal of physiology,
S Koumi, and J A Wasserstrom
August 2003, Biochemical and biophysical research communications,
S Koumi, and J A Wasserstrom
January 1990, Progress in clinical and biological research,
S Koumi, and J A Wasserstrom
November 1988, The American journal of physiology,
S Koumi, and J A Wasserstrom
August 2001, Biochemical and biophysical research communications,
S Koumi, and J A Wasserstrom
February 1996, Biochemical and biophysical research communications,
S Koumi, and J A Wasserstrom
August 1996, The American journal of physiology,
S Koumi, and J A Wasserstrom
December 1993, The Journal of membrane biology,
S Koumi, and J A Wasserstrom
December 1990, The American journal of physiology,
Copied contents to your clipboard!