Susceptibility of Plasmodium falciparum to a combination of thymidine and ICI D1694, a quinazoline antifolate directed at thymidylate synthase. 1994

P K Rathod, and S Reshmi
Department of Biology, Catholic University of America, Washington, DC 20064.

Unlike mammalian cells, malarial parasites lack the enzymes to salvage preformed pyrimidines. For this reason, a combination of a thymidylate synthase inhibitor and the nucleoside thymidine should provide selective antimalarial activity even in the absence of any known active site differences between malarial and mammalian thymidylate synthases. To test this hypothesis, we evaluated the in vitro antimalarial activity of ICI D1694, a quinazoline antifolate that inhibits thymidylate synthase in mammalian cells. ICI D1694 inhibited the in vitro proliferation of Plasmodium falciparum with a 50% inhibitory concentration of 20 microM. As predicted, this antimalarial activity was not affected by the presence of 10 microM thymidine in the culture medium. In contrast, five different mammalian cells, several of which were susceptible to nanomolar levels of ICI D1694 in the absence of thymidine, were rescued by thymidine. At doses of 100 microM ICI D1694 and 10 microM thymidine, the proliferation of parasites was completely inhibited, but the proliferation of all mammalian cells remained unaffected. A test of susceptibility patterns among five different isolates of P. falciparum revealed that strains resistant to pyrimethamine, cycloguanil, or chloroquine had susceptibilities to ICI D1694 essentially the same as those of wild-type parasites. These findings are consistent with the hypothesis that, intracellularly, ICI D1694 inhibits P. falciparum thymidylate synthase. Overall, it is clear that even with an inhibitor of malarial thymidylate synthase that is not particularly effective in itself, one can obtain selective inhibition of parasites if the antimalarial agent is used in combination with thymidine. More effective inhibitors of malarial thymidylate synthase will undoubtedly lead to selective chemotherapy in vivo.

UI MeSH Term Description Entries
D010963 Plasmodium falciparum A species of protozoa that is the causal agent of falciparum malaria (MALARIA, FALCIPARUM). It is most prevalent in the tropics and subtropics. Plasmodium falciparums,falciparums, Plasmodium
D011799 Quinazolines A group of aromatic heterocyclic compounds that contain a bicyclic structure with two fused six-membered aromatic rings, a benzene ring and a pyrimidine ring. Quinazoline
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D004912 Erythrocytes Red blood cells. Mature erythrocytes are non-nucleated, biconcave disks containing HEMOGLOBIN whose function is to transport OXYGEN. Blood Cells, Red,Blood Corpuscles, Red,Red Blood Cells,Red Blood Corpuscles,Blood Cell, Red,Blood Corpuscle, Red,Erythrocyte,Red Blood Cell,Red Blood Corpuscle
D005493 Folic Acid Antagonists Inhibitors of the enzyme, dihydrofolate reductase (TETRAHYDROFOLATE DEHYDROGENASE), which converts dihydrofolate (FH2) to tetrahydrofolate (FH4). They are frequently used in cancer chemotherapy. (From AMA, Drug Evaluations Annual, 1994, p2033) Antifolate,Antifolates,Dihydrofolate Reductase Inhibitor,Folic Acid Antagonist,Dihydrofolate Reductase Inhibitors,Folic Acid Metabolism Inhibitors,Acid Antagonist, Folic,Acid Antagonists, Folic,Antagonist, Folic Acid,Antagonists, Folic Acid,Inhibitor, Dihydrofolate Reductase,Inhibitors, Dihydrofolate Reductase,Reductase Inhibitor, Dihydrofolate,Reductase Inhibitors, Dihydrofolate
D006367 HeLa Cells The first continuously cultured human malignant CELL LINE, derived from the cervical carcinoma of Henrietta Lacks. These cells are used for, among other things, VIRUS CULTIVATION and PRECLINICAL DRUG EVALUATION assays. Cell, HeLa,Cells, HeLa,HeLa Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000962 Antimalarials Agents used in the treatment of malaria. They are usually classified on the basis of their action against plasmodia at different stages in their life cycle in the human. (From AMA, Drug Evaluations Annual, 1992, p1585) Anti-Malarial,Antimalarial,Antimalarial Agent,Antimalarial Drug,Anti-Malarials,Antimalarial Agents,Antimalarial Drugs,Agent, Antimalarial,Agents, Antimalarial,Anti Malarial,Anti Malarials,Drug, Antimalarial,Drugs, Antimalarial
D013876 Thiophenes A monocyclic heteroarene furan in which the oxygen atom is replaced by a sulfur. Thiophene

Related Publications

P K Rathod, and S Reshmi
January 1991, Advances in experimental medicine and biology,
P K Rathod, and S Reshmi
July 1993, The Journal of biological chemistry,
P K Rathod, and S Reshmi
May 1991, Journal of medicinal chemistry,
P K Rathod, and S Reshmi
June 1992, Journal of medicinal chemistry,
P K Rathod, and S Reshmi
September 1999, Journal of medicinal chemistry,
Copied contents to your clipboard!