Zinc and other divalent cations inhibit purified leukotriene A4 hydrolase and leukotriene B4 biosynthesis in human polymorphonuclear leukocytes. 1994

A Wetterholm, and L Macchia, and J Z Haeggström
Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.

Leukotriene A4 hydrolase is a bifunctional metalloenzyme that contains 1 mol of zinc per mole of protein. The primary function of the metal is catalytic and zinc is thus necessary for both its peptidase and its epoxide hydrolase activity. However, at concentrations of zinc exceeding a 1:1 molar ratio (metal:enzyme), we found that zinc acted as an inhibitor with IC50 values of 10 microM for the epoxide hydrolase activity, i.e., the conversion of leukotriene A4 to leukotriene B4, and 0.1 microM for the peptidase activity. The inhibition of both enzyme activities could be reversed by treating the enzyme with chelating agents such as EDTA or dipicolinic acid. Several divalent cations, other than zinc, were also found to inhibit leukotriene A4 hydrolase although with different specificity and potency for the two enzyme activities. Thus, CdSO4 and HgCl2 were effective inhibitors (IC50 approximately 10 microM) of the epoxide hydrolase activity, whereas CoCl2 or MnCl2 were not inhibitory even at concentrations of 1 mM. On the other hand, the peptidase activity was inhibited by CdSO4, NiSO4, HgCl2, MnCl2, CoCl2, and PbNO3, listed in decreasing order of potencies (IC50 0.5-10 microM). In addition, zinc in micromolar concentrations inhibited leukotriene B4 formation in intact human polymorphonuclear leukocytes stimulated by the calcium ionophore A23187 and cell homogenates incubated with arachidonic acid. However, this effect was not related to inhibition of leukotriene A4 hydrolase but rather to a direct or indirect inhibitory effect on the enzyme 5-lipoxygenase in isolated leukocytes. In these cells, 15-lipoxygenase activity was also inhibited by zinc (IC50 5 microM), whereas leukotriene C4 synthase activity in human platelets and rat basophilic leukemia cells was significantly affected only at concentrations > or = 1 mM.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D007975 Leukotriene B4 The major metabolite in neutrophil polymorphonuclear leukocytes. It stimulates polymorphonuclear cell function (degranulation, formation of oxygen-centered free radicals, arachidonic acid release, and metabolism). (From Dictionary of Prostaglandins and Related Compounds, 1990) 5,12-HETE,5,12-diHETE,LTB4,Leukotriene B,Leukotriene B-4,Leukotrienes B,5,12 HETE,5,12 diHETE,B-4, Leukotriene,Leukotriene B 4
D008627 Mercuric Chloride Mercury chloride (HgCl2). A highly toxic compound that volatizes slightly at ordinary temperature and appreciably at 100 degrees C. It is corrosive to mucous membranes and used as a topical antiseptic and disinfectant. Mercury Dichloride,Corrosive Sublimate,HgCl2,Mercuric Perchloride,Mercury Bichloride,Mercury Perchloride,Sublimate,Bichloride, Mercury,Chloride, Mercuric,Dichloride, Mercury,Perchloride, Mercuric,Perchloride, Mercury,Sublimate, Corrosive
D009504 Neutrophils Granular leukocytes having a nucleus with three to five lobes connected by slender threads of chromatin, and cytoplasm containing fine inconspicuous granules and stainable by neutral dyes. LE Cells,Leukocytes, Polymorphonuclear,Polymorphonuclear Leukocytes,Polymorphonuclear Neutrophils,Neutrophil Band Cells,Band Cell, Neutrophil,Cell, LE,LE Cell,Leukocyte, Polymorphonuclear,Neutrophil,Neutrophil Band Cell,Neutrophil, Polymorphonuclear,Polymorphonuclear Leukocyte,Polymorphonuclear Neutrophil
D010450 Endopeptidases A subclass of PEPTIDE HYDROLASES that catalyze the internal cleavage of PEPTIDES or PROTEINS. Endopeptidase,Peptide Peptidohydrolases
D001792 Blood Platelets Non-nucleated disk-shaped cells formed in the megakaryocyte and found in the blood of all mammals. They are mainly involved in blood coagulation. Platelets,Thrombocytes,Blood Platelet,Platelet,Platelet, Blood,Platelets, Blood,Thrombocyte
D002104 Cadmium An element with atomic symbol Cd, atomic number 48, and atomic weight 112.41. It is a metal and ingestion will lead to CADMIUM POISONING.
D002413 Cations, Divalent Positively charged atoms, radicals or groups of atoms with a valence of plus 2, which travel to the cathode or negative pole during electrolysis. Divalent Cations
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002614 Chelating Agents Chemicals that bind to and remove ions from solutions. Many chelating agents function through the formation of COORDINATION COMPLEXES with METALS. Chelating Agent,Chelator,Complexons,Metal Antagonists,Chelators,Metal Chelating Agents,Agent, Chelating,Agents, Chelating,Agents, Metal Chelating,Antagonists, Metal,Chelating Agents, Metal

Related Publications

A Wetterholm, and L Macchia, and J Z Haeggström
July 1996, The Journal of biological chemistry,
A Wetterholm, and L Macchia, and J Z Haeggström
January 1999, Clinical reviews in allergy & immunology,
A Wetterholm, and L Macchia, and J Z Haeggström
October 1995, The Journal of pharmacology and experimental therapeutics,
A Wetterholm, and L Macchia, and J Z Haeggström
October 2008, Journal of immunotoxicology,
A Wetterholm, and L Macchia, and J Z Haeggström
October 1995, Journal of lipid mediators and cell signalling,
A Wetterholm, and L Macchia, and J Z Haeggström
December 2004, The Journal of biological chemistry,
A Wetterholm, and L Macchia, and J Z Haeggström
January 1991, Advances in prostaglandin, thromboxane, and leukotriene research,
A Wetterholm, and L Macchia, and J Z Haeggström
January 1991, Advances in prostaglandin, thromboxane, and leukotriene research,
A Wetterholm, and L Macchia, and J Z Haeggström
October 1984, The Journal of biological chemistry,
A Wetterholm, and L Macchia, and J Z Haeggström
January 1997, Advances in experimental medicine and biology,
Copied contents to your clipboard!