Molecular analysis of the aspartate kinase-homoserine dehydrogenase gene from Arabidopsis thaliana. 1994

M Ghislain, and V Frankard, and D Vandenbossche, and B F Matthews, and M Jacobs
Laboratory for Plant Genetics, Vrije Universiteit Brussel, Belgium.

The gene encoding Arabidopsis thaliana aspartate kinase (ATP:L-aspartate 4-phosphotransferase, EC 2.7.2.4) was isolated from genomic DNA libraries using the carrot ak-hsdh gene as the hybridizing probe. Two genomic libraries from different A. thaliana races were screened independently with the ak probe and the hsdh probe. Nucleotide sequences of the A. thaliana overlapping clones were determined and encompassed 2 kb upstream of the coding region and 300 bp downstream. The corresponding cDNA was isolated from a cDNA library made from poly(A)(+)-mRNA extracted from cell suspension cultures. Sequence comparison between the Arabidopsis gene product and an AK-HSDH bifunctional enzyme from carrot and from the Escherichia coli thrA and metL genes shows 80%, 37.5% and 31.4% amino acid sequence identity, respectively. The A. thaliana ak-hsdh gene is proposed to be the plant thrA homologue coding for the AK isozyme feedback inhibited by threonine. The gene is present in A. thaliana in single copy and functional as evidenced by hybridization analyses. The apoprotein-coding region is interrupted by 15 introns ranging from 78 to 134 bp. An upstream chloroplast-targeting sequence with low sequence similarity with the carrot transit peptide was identified. A signal sequence is proposed starting from a functional ATG initiation codon to the first exon of the apoprotein. Two additional introns were identified: one in the 5' non-coding leader sequence and the other in the putative chloroplast targeting sequence. 5' sequence analysis revealed the presence of several possible promoter elements as well as conserved regulatory motifs. Among these, an Opaque2 and a yeast GCN4-like recognition element might be relevant for such a gene coding for an enzyme limiting the carbon-flux entry to the biosynthesis of several essential amino acids. 3' sequence analysis showed the occurrence of two polyadenylation signals upstream of the polyadenylation site. This work is the first report of the molecular cloning of a plant ak-hsdh genomic sequence. It describes a promoter element that may bring new insights to the regulation of the biosynthesis of the aspartate family of amino acids.

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011110 Polymorphism, Genetic The regular and simultaneous occurrence in a single interbreeding population of two or more discontinuous genotypes. The concept includes differences in genotypes ranging in size from a single nucleotide site (POLYMORPHISM, SINGLE NUCLEOTIDE) to large nucleotide sequences visible at a chromosomal level. Gene Polymorphism,Genetic Polymorphism,Polymorphism (Genetics),Genetic Polymorphisms,Gene Polymorphisms,Polymorphism, Gene,Polymorphisms (Genetics),Polymorphisms, Gene,Polymorphisms, Genetic
D012045 Regulatory Sequences, Nucleic Acid Nucleic acid sequences involved in regulating the expression of genes. Nucleic Acid Regulatory Sequences,Regulatory Regions, Nucleic Acid (Genetics),Region, Regulatory,Regions, Regulatory,Regulator Regions, Nucleic Acid,Regulatory Region,Regulatory Regions
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001225 Aspartokinase Homoserine Dehydrogenase A bifunctional protein consisting of aspartokinase, and homoserine dehydrogenase activities. It is found primarily in BACTERIA and in PLANTS. Aspartokinase I Homoserine Dehydrogenase I,Aspartokinase II Homoserine Dehydrogenase II,Bifunctional Aspartokinase-Homoserine Dehydrogenase,Bifunctional Aspartokinase-Homoserine Dehydrogenase 1,Bifunctional Aspartokinase-Homoserine Dehydrogenase 2,Aspartokinase-Homoserine Dehydrogenase, Bifunctional,Bifunctional Aspartokinase Homoserine Dehydrogenase,Bifunctional Aspartokinase Homoserine Dehydrogenase 1,Bifunctional Aspartokinase Homoserine Dehydrogenase 2,Dehydrogenase, Aspartokinase Homoserine,Dehydrogenase, Bifunctional Aspartokinase-Homoserine,Homoserine Dehydrogenase, Aspartokinase
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D014675 Vegetables A food group comprised of EDIBLE PLANTS or their parts. Vegetable

Related Publications

M Ghislain, and V Frankard, and D Vandenbossche, and B F Matthews, and M Jacobs
February 2003, The Journal of biological chemistry,
M Ghislain, and V Frankard, and D Vandenbossche, and B F Matthews, and M Jacobs
February 2002, Protein expression and purification,
M Ghislain, and V Frankard, and D Vandenbossche, and B F Matthews, and M Jacobs
December 1994, Plant physiology,
M Ghislain, and V Frankard, and D Vandenbossche, and B F Matthews, and M Jacobs
December 2005, The Journal of biological chemistry,
M Ghislain, and V Frankard, and D Vandenbossche, and B F Matthews, and M Jacobs
January 2000, Plant molecular biology,
M Ghislain, and V Frankard, and D Vandenbossche, and B F Matthews, and M Jacobs
January 1983, Folia microbiologica,
M Ghislain, and V Frankard, and D Vandenbossche, and B F Matthews, and M Jacobs
December 1999, Archives of biochemistry and biophysics,
M Ghislain, and V Frankard, and D Vandenbossche, and B F Matthews, and M Jacobs
December 2018, Bioscience, biotechnology, and biochemistry,
M Ghislain, and V Frankard, and D Vandenbossche, and B F Matthews, and M Jacobs
February 2002, Protein expression and purification,
Copied contents to your clipboard!