Focal compensatory enlargement of human arteries in response to progressive atherosclerosis. In vivo documentation using intravascular ultrasound. 1994

D W Losordo, and K Rosenfield, and J Kaufman, and A Pieczek, and J M Isner
Department of Medicine (Cardiology), St. Elizabeth's Medical Center, Tufts University School of Medicine, Boston, MA 02135.

BACKGROUND Previous postmortem studies have demonstrated compensatory enlargement of atherosclerotic arteries in animal models and patients. Conclusions regarding these changes were drawn based on a comparison of the dimensions of diseased arteries in one group of subjects with the dimensions of normal arteries in another group. This method admits potential confounding variables, such as demographics and other disease states, which might also have an impact on arterial size. RESULTS Using intravascular ultrasound, we studied a total of 62 paired, adjacent normal and diseased sites in the superficial femoral arteries of 20 patients undergoing peripheral vascular interventions. Morphological assessment was performed using a computer-based image analysis system. Measurements were made of the cross-sectional area of the arterial lumen, the atherosclerotic plaque, and the outer border of the artery. These dimensions were then compared to determine the effects of progressive atherosclerosis on arterial morphology. Luminal cross-sectional area decreased from 21.1 +/- 2.2 mm2 in normal segments to 16.7 +/- 0.8 mm2 (P = .0001) in adjacent atherosclerotic segments. Similarly, minimal luminal diameter decreased from 5.7 +/- 0.2 to 5.0 +/- 0.1 mm2, and maximal luminal diameter decreased from 6.2 +/- 0.2 to 5.7 +/- 0.2 mm2. At these same sites, total arterial area was 32.9 +/- 1.6 and 37.9 +/- 1.9 mm2 (P = .0001) in normal and diseased segments, respectively. Minimal and maximal arterial diameters demonstrated similar increases (7.3 +/- 0.2 to 7.7 +/- 0.2 mm2 [P = .0015] and 7.6 +/- 0.2 to 8.3 +/- 0.2 mm2 [P = .0001], respectively). Regression analysis disclosed correlation of the cross-sectional area of plaque to the total arterial area (R = .70, P = .0001). CONCLUSIONS Human arteries enlarge in response to progressive atherosclerosis. This compensatory mechanism results in an increase in arterial size that is proportionate to the cross-sectional area of plaque that has accumulated in the vessel. Intravascular ultrasound demonstrates that this process is focal compensatory enlargement at discrete sites of atherosclerotic narrowing immediately adjacent to more normal areas in which arterial size is smaller.

UI MeSH Term Description Entries
D008297 Male Males
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults
D000368 Aged A person 65 years of age or older. For a person older than 79 years, AGED, 80 AND OVER is available. Elderly
D000369 Aged, 80 and over Persons 80 years of age and older. Oldest Old
D001158 Arteries The vessels carrying blood away from the heart. Artery
D001161 Arteriosclerosis Thickening and loss of elasticity of the walls of ARTERIES of all sizes. There are many forms classified by the types of lesions and arteries involved, such as ATHEROSCLEROSIS with fatty lesions in the ARTERIAL INTIMA of medium and large muscular arteries. Arterioscleroses
D014463 Ultrasonography The visualization of deep structures of the body by recording the reflections or echoes of ultrasonic pulses directed into the tissues. Use of ultrasound for imaging or diagnostic purposes employs frequencies ranging from 1.6 to 10 megahertz. Echography,Echotomography,Echotomography, Computer,Sonography, Medical,Tomography, Ultrasonic,Ultrasonic Diagnosis,Ultrasonic Imaging,Ultrasonographic Imaging,Computer Echotomography,Diagnosis, Ultrasonic,Diagnostic Ultrasound,Ultrasonic Tomography,Ultrasound Imaging,Diagnoses, Ultrasonic,Diagnostic Ultrasounds,Imaging, Ultrasonic,Imaging, Ultrasonographic,Imaging, Ultrasound,Imagings, Ultrasonographic,Imagings, Ultrasound,Medical Sonography,Ultrasonic Diagnoses,Ultrasonographic Imagings,Ultrasound, Diagnostic,Ultrasounds, Diagnostic

Related Publications

D W Losordo, and K Rosenfield, and J Kaufman, and A Pieczek, and J M Isner
December 1995, American heart journal,
D W Losordo, and K Rosenfield, and J Kaufman, and A Pieczek, and J M Isner
June 1996, Journal of the American College of Cardiology,
D W Losordo, and K Rosenfield, and J Kaufman, and A Pieczek, and J M Isner
February 1996, Circulation,
D W Losordo, and K Rosenfield, and J Kaufman, and A Pieczek, and J M Isner
December 1987, The New England journal of medicine,
D W Losordo, and K Rosenfield, and J Kaufman, and A Pieczek, and J M Isner
May 1987, The New England journal of medicine,
D W Losordo, and K Rosenfield, and J Kaufman, and A Pieczek, and J M Isner
April 2000, International journal of cardiac imaging,
D W Losordo, and K Rosenfield, and J Kaufman, and A Pieczek, and J M Isner
March 2015, International journal of cardiology. Heart & vasculature,
Copied contents to your clipboard!