Active and passive arteriolar regulation in spontaneously hypertensive rats. 1994

H G Bohlen, and J M Lash
Department of Physiology and Biophysics, Indiana University Medical School, Indianapolis 46202.

This study determined to what extent active and passive wall tensions increase in in vivo intestinal arterioles of 13- to 15-week-old and 25- to 27-week-old spontaneously hypertensive rats (SHR) to maintain normal or smaller arteriolar diameters during microvascular hypertension. Acetylcholine and nitroprusside were used to determine whether vascular muscle relaxation to endothelium-derived relaxing factor or cyclic GMP is impaired. Large arterioles of hypertensive rats have passive tension-circumference relations that are steeper and shifted to the left compared with those of age-matched controls; passive resistance to distension limits vasodilation in hypertensive rats except at their naturally elevated arteriolar pressure. Passive tension contributes approximately 30% of the total resting tension in arterioles of hypertensive and normotensive rats because a greater passive tension occurs at the 20% to 25% constricted resting diameter in hypertensive rats. Absolute and relative changes in the diameter of SHR arterioles during acetylcholine and nitroprusside application were equal to or greater than those in Wistar-Kyoto rats. However, reduction in active tension was suppressed in older SHR and remained approximately 50% higher than that found in older Wistar-Kyoto rats during drug application. Vasoconstriction and increased passive resistance to distension of the arteriolar wall diminish the active tension required to maintain normal or smaller resting diameters against microvascular hypertension. However, the elevated microvascular pressure in hypertensive rats is required to allow near-normal dilation to compensate for their increased passive resistance to stretch and decreased ability to relax active tension through cyclic GMP mechanisms.

UI MeSH Term Description Entries
D007478 Iontophoresis Therapeutic introduction of ions of soluble salts into tissues by means of electric current. In medical literature it is commonly used to indicate the process of increasing the penetration of drugs into surface tissues by the application of electric current. It has nothing to do with ION EXCHANGE; AIR IONIZATION nor PHONOPHORESIS, none of which requires current. Iontophoreses
D008297 Male Males
D009599 Nitroprusside A powerful vasodilator used in emergencies to lower blood pressure or to improve cardiac function. It is also an indicator for free sulfhydryl groups in proteins. Nitroferricyanide,Sodium Nitroprusside,Cyanonitrosylferrate,Ketostix,Naniprus,Nipride,Nipruton,Nitriate,Nitropress,Nitroprussiat Fides,Nitroprusside, Disodium Salt,Nitroprusside, Disodium Salt, Dihydrate,Disodium Salt Nitroprusside,Nitroprusside, Sodium
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D011918 Rats, Inbred SHR A strain of Rattus norvegicus with elevated blood pressure used as a model for studying hypertension and stroke. Rats, Spontaneously Hypertensive,Rats, SHR,Inbred SHR Rat,Inbred SHR Rats,Rat, Inbred SHR,Rat, SHR,Rat, Spontaneously Hypertensive,SHR Rat,SHR Rat, Inbred,SHR Rats,SHR Rats, Inbred,Spontaneously Hypertensive Rat,Spontaneously Hypertensive Rats
D011921 Rats, Inbred WKY A strain of Rattus norvegicus used as a normotensive control for the spontaneous hypertensive rats (SHR). Rats, Wistar Kyoto,Wistar Kyoto Rat,Rats, WKY,Inbred WKY Rat,Inbred WKY Rats,Kyoto Rat, Wistar,Rat, Inbred WKY,Rat, WKY,Rat, Wistar Kyoto,WKY Rat,WKY Rat, Inbred,WKY Rats,WKY Rats, Inbred,Wistar Kyoto Rats
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D000109 Acetylcholine A neurotransmitter found at neuromuscular junctions, autonomic ganglia, parasympathetic effector junctions, a subset of sympathetic effector junctions, and at many sites in the central nervous system. 2-(Acetyloxy)-N,N,N-trimethylethanaminium,Acetilcolina Cusi,Acetylcholine Bromide,Acetylcholine Chloride,Acetylcholine Fluoride,Acetylcholine Hydroxide,Acetylcholine Iodide,Acetylcholine L-Tartrate,Acetylcholine Perchlorate,Acetylcholine Picrate,Acetylcholine Picrate (1:1),Acetylcholine Sulfate (1:1),Bromoacetylcholine,Chloroacetylcholine,Miochol,Acetylcholine L Tartrate,Bromide, Acetylcholine,Cusi, Acetilcolina,Fluoride, Acetylcholine,Hydroxide, Acetylcholine,Iodide, Acetylcholine,L-Tartrate, Acetylcholine,Perchlorate, Acetylcholine
D000375 Aging The gradual irreversible changes in structure and function of an organism that occur as a result of the passage of time. Senescence,Aging, Biological,Biological Aging
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

H G Bohlen, and J M Lash
October 1988, Microcirculation, endothelium, and lymphatics,
H G Bohlen, and J M Lash
January 1996, Journal of cardiovascular pharmacology and therapeutics,
H G Bohlen, and J M Lash
July 1991, Hypertension (Dallas, Tex. : 1979),
H G Bohlen, and J M Lash
January 1979, The American journal of physiology,
H G Bohlen, and J M Lash
October 1989, European journal of pharmacology,
H G Bohlen, and J M Lash
September 1984, Behavioral and neural biology,
H G Bohlen, and J M Lash
September 2002, Hypertension research : official journal of the Japanese Society of Hypertension,
H G Bohlen, and J M Lash
January 1995, International journal of microcirculation, clinical and experimental,
H G Bohlen, and J M Lash
January 1995, Journal of applied physiology (Bethesda, Md. : 1985),
Copied contents to your clipboard!