Uptake of non-transferrin-bound iron by both reductive and nonreductive processes is modulated by intracellular iron. 1994

E W Randell, and J G Parkes, and N F Olivieri, and D M Templeton
Department of Clinical Biochemistry, University of Toronto, Ontario, Canada.

Non-transferrin-bound iron (NTBI) uptake occurs in a variety of cells by a saturable, specific and temperature-sensitive process. Our previous studies indicated that NTBI uptake by cardiac myocytes and Hep G2 cells was reversibly up-regulated by iron deposition. In the present work we have characterized this up-regulation and examined its mechanism by comparing the uptake of oxidized (Fe3+) and ascorbate-reduced (Fe2+) forms of iron. Iron loading markedly enhanced the uptake of iron both in the presence and absence of ascorbate, but the increment was greater when ascorbate was absent. This up-regulation is partially inhibited by actinomycin D and cycloheximide, indicating a requirement for protein synthesis. Uptake by the iron-loaded cells was less sensitive to thiol-alkylating agents and competing metal ions, but was more sensitive to proteolysis. Iron loading causes an increase in both Km and Vmax for uptake of both Fe2+ and Fe3+, although the values differ, suggesting distinct rate-limiting steps for uptake of Fe2+ and Fe3+. Consistent with this idea, uptake of the two ions showed differential sensitivity to thiol reagents, competing metal ions and monensin. The Fe(2+)-specific chelators bathophenanthroline disulfonate and ferrozine markedly inhibited iron uptake whether ascorbate was present or not, indicating that Fe3+ uptake is dependent on reduction to the ferrous state. This requirement for reduction was independent of the iron status of the cells, demonstrating that the process of up-regulation is not due to the appearance of a new mechanism for translocation of Fe3+ without reduction. Taken together, the evidence favors a model of NTBI transport where an obligate and rate-determining reduction of Fe3+ occurs prior to or during uptake, followed by translocation through an Fe2+ carrier. The distinct translocation mechanisms of uptake in the presence and absence of ascorbate suggest that exogenous Fe2+ does not access the carrier available to the nascent ferrous ion derived from the reductase and is consistent with close coupling between the reduction and the translocation processes. In iron-loaded cells with increased rates of NTBI transport, a similar mechanism prevails.

UI MeSH Term Description Entries
D007501 Iron A metallic element with atomic symbol Fe, atomic number 26, and atomic weight 55.85. It is an essential constituent of HEMOGLOBINS; CYTOCHROMES; and IRON-BINDING PROTEINS. It plays a role in cellular redox reactions and in the transport of OXYGEN. Iron-56,Iron 56
D008670 Metals Electropositive chemical elements characterized by ductility, malleability, luster, and conductance of heat and electricity. They can replace the hydrogen of an acid and form bases with hydroxyl radicals. (Grant & Hackh's Chemical Dictionary, 5th ed) Metal
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D011500 Protein Synthesis Inhibitors Compounds which inhibit the synthesis of proteins. They are usually ANTI-BACTERIAL AGENTS or toxins. Mechanism of the action of inhibition includes the interruption of peptide-chain elongation, the blocking the A site of ribosomes, the misreading of the genetic code or the prevention of the attachment of oligosaccharide side chains to glycoproteins. Protein Synthesis Antagonist,Protein Synthesis Antagonists,Protein Synthesis Inhibitor,Antagonist, Protein Synthesis,Antagonists, Protein Synthesis,Inhibitor, Protein Synthesis,Inhibitors, Protein Synthesis,Synthesis Antagonist, Protein,Synthesis Inhibitor, Protein
D002121 Calcium Channel Blockers A class of drugs that act by selective inhibition of calcium influx through cellular membranes. Calcium Antagonists, Exogenous,Calcium Blockaders, Exogenous,Calcium Channel Antagonist,Calcium Channel Blocker,Calcium Channel Blocking Drug,Calcium Inhibitors, Exogenous,Channel Blockers, Calcium,Exogenous Calcium Blockader,Exogenous Calcium Inhibitor,Calcium Channel Antagonists,Calcium Channel Blocking Drugs,Exogenous Calcium Antagonists,Exogenous Calcium Blockaders,Exogenous Calcium Inhibitors,Antagonist, Calcium Channel,Antagonists, Calcium Channel,Antagonists, Exogenous Calcium,Blockader, Exogenous Calcium,Blocker, Calcium Channel,Blockers, Calcium Channel,Calcium Blockader, Exogenous,Calcium Inhibitor, Exogenous,Channel Antagonist, Calcium,Channel Blocker, Calcium,Inhibitor, Exogenous Calcium
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D002614 Chelating Agents Chemicals that bind to and remove ions from solutions. Many chelating agents function through the formation of COORDINATION COMPLEXES with METALS. Chelating Agent,Chelator,Complexons,Metal Antagonists,Chelators,Metal Chelating Agents,Agent, Chelating,Agents, Chelating,Agents, Metal Chelating,Antagonists, Metal,Chelating Agents, Metal
D005290 Ferric Compounds Inorganic or organic compounds containing trivalent iron. Compounds, Ferric
D005296 Ferrous Compounds Inorganic or organic compounds that contain divalent iron. Compounds, Ferrous
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

E W Randell, and J G Parkes, and N F Olivieri, and D M Templeton
June 2013, Biochimica et biophysica acta,
E W Randell, and J G Parkes, and N F Olivieri, and D M Templeton
February 2008, Journal of hepatology,
E W Randell, and J G Parkes, and N F Olivieri, and D M Templeton
September 2016, Bio-protocol,
E W Randell, and J G Parkes, and N F Olivieri, and D M Templeton
June 2014, Neuropeptides,
E W Randell, and J G Parkes, and N F Olivieri, and D M Templeton
May 2007, Toxicology and applied pharmacology,
E W Randell, and J G Parkes, and N F Olivieri, and D M Templeton
July 1999, European journal of biochemistry,
E W Randell, and J G Parkes, and N F Olivieri, and D M Templeton
May 2000, Cellular and molecular biology (Noisy-le-Grand, France),
E W Randell, and J G Parkes, and N F Olivieri, and D M Templeton
June 2022, Clinica chimica acta; international journal of clinical chemistry,
E W Randell, and J G Parkes, and N F Olivieri, and D M Templeton
February 2009, Analytical biochemistry,
E W Randell, and J G Parkes, and N F Olivieri, and D M Templeton
September 2006, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!