Activity-induced changes in synaptic release sites at the crayfish neuromuscular junction. 1994

J M Wojtowicz, and L Marin, and H L Atwood
Department of Physiology, University of Toronto, Ontario, Canada.

Crustacean motor axons provide a model in which activity-dependent changes in synaptic physiology and synaptic structure can be concurrently observed in single identifiable neurons. In response to a train of stimulation, crustacean neuromuscular junctions undergo pronounced facilitation of transmitter release. The effects of maintained high-frequency stimulation may persist for at least several hours ("long-term facilitation"). Electrophysiological studies suggest that the number of "active" synapses contributing transmitter quanta at low frequencies of stimulation increases during and after a train of high-frequency stimulation. However, at different terminal recording sites the effect of stimulation varies, and it was observed that not all released quanta produce a voltage change in the postsynaptic muscle cell. Electron microscopic examinations of serial sections from nerve terminals subjected to stimulation were made to determine whether changes in synaptic structure could be correlated with activity-induced long-lasting enhancement of transmission. A procedure was introduced for marking a recorded terminal with fluorescent polystyrene microspheres, which are visible in electron micrographs of the recording site. Crustacean nerve terminals possess a large number of discrete synapses, a small fraction of which have multiple presynaptic "active zones" (dense bodies with clustered synaptic vesicles, thought to represent sites of evoked transmitter release). In terminals previously stimulated, the proportion of synapses with multiple "active zones" is greater than in control unstimulated terminals. Total synaptic vesicle counts and readily releasable vesicles at synapses are not significantly different in previously stimulated terminals and controls. In terminals fixed during stimulation a few synapses show evidence of division in "active zones," and synaptic vesicle counts are lower than in controls.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009469 Neuromuscular Junction The synapse between a neuron and a muscle. Myoneural Junction,Nerve-Muscle Preparation,Junction, Myoneural,Junction, Neuromuscular,Junctions, Myoneural,Junctions, Neuromuscular,Myoneural Junctions,Nerve Muscle Preparation,Nerve-Muscle Preparations,Neuromuscular Junctions,Preparation, Nerve-Muscle,Preparations, Nerve-Muscle
D003400 Astacoidea A superfamily of various freshwater CRUSTACEA, in the infraorder Astacidea, comprising the crayfish. Common genera include Astacus and Procambarus. Crayfish resemble lobsters, but are usually much smaller. Astacus,Crayfish,Procambarus,Astacoideas,Crayfishs
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D005121 Extremities The farthest or outermost projections of the body, such as the HAND and FOOT. Limbs,Extremity,Limb
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse

Related Publications

J M Wojtowicz, and L Marin, and H L Atwood
October 1997, Brain research,
J M Wojtowicz, and L Marin, and H L Atwood
June 1983, Experimental neurology,
J M Wojtowicz, and L Marin, and H L Atwood
September 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience,
J M Wojtowicz, and L Marin, and H L Atwood
August 1983, The Journal of physiology,
J M Wojtowicz, and L Marin, and H L Atwood
August 1982, Brain research,
J M Wojtowicz, and L Marin, and H L Atwood
September 1999, Canadian journal of physiology and pharmacology,
J M Wojtowicz, and L Marin, and H L Atwood
February 2006, The Journal of physiology,
J M Wojtowicz, and L Marin, and H L Atwood
November 1971, The Journal of physiology,
J M Wojtowicz, and L Marin, and H L Atwood
September 1984, The Journal of physiology,
Copied contents to your clipboard!