Developmental regulation of the hypothalamic metabotropic glutamate receptor mGluR1. 1994

A N van den Pol, and L Kogelman, and P Ghosh, and P Liljelund, and C Blackstone
Section of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06510.

The expression of the metabotropic glutamate receptor mGluR1 was studied with Northern and Western blot analysis, with immunocytochemistry, and with Ca2+ digital imaging in the developing rat hypothalamus. mGluR1 is coupled to a G protein and activation by glutamate and related agonists leads to intracellular phosphotidylinositol hydrolysis and Ca2+ mobilization. mGluR1 RNA could be detected in embryonic hypothalamus, and by the day of birth and prior to the primary period of synaptogenesis, both mGluR1 RNA and protein were strongly expressed. In parallel experiments with digital imaging of cultured hypothalamic cells, some embryonic day 18 hypothalamic neurons and many astrocytes after 3 d in vitro showed Ca2+ responses to quisqualate and t-ACPD, and to glutamate in the absence of extracellular Ca2+. A greater number of embryonic neurons responded to NMDA than to agonists of the metabotropic receptor. With increased development time in culture, the number of neurons that responded to metabotropic glutamate receptor agonists increased. In the adult hypothalamus, mGluR1-immunoreactive neurons were widespread, and particularly dense in the dorsomedial, lateral, and anterior hypothalamus/preoptic areas, and in the mammillary body. Strongly immunoreactive cells were interspersed among neurons with no immunoreactivity. In developing neurons a diffuse immunostaining appeared along dendrites and somata. With time, beginning in the first week after birth, strongly stained puncta appeared, possibly associated with synaptic specializations. These puncta were numerous on dendrites of some adult neurons, and were the most strongly stained regions of neurons. Neurons developing in vitro at low neuron densities showed a development of mGluR1 immunoreactivity similar to that of neurons in vivo, but with a delayed progression of immunostaining. We found no obvious staining of axons or of astrocytes. A strong expression of mGluR1 protein was found in the hypothalamus during the first 2 postnatal weeks; this expression was partially reduced in adults. In contrast, cerebellum showed no reduction in mGluR1 protein in adults. Together these data suggest a complex regulation of mGluR1 during development, with sufficient expression of functional receptors in the developing hypothalamus to modulate morphogenesis and synaptogenesis, and later to play a role in transduction of glutamate signals in the adult. Different regions of the brain showed dramatic differences in the way each expresses mGluR1 during development.

UI MeSH Term Description Entries
D007031 Hypothalamus Ventral part of the DIENCEPHALON extending from the region of the OPTIC CHIASM to the caudal border of the MAMMILLARY BODIES and forming the inferior and lateral walls of the THIRD VENTRICLE. Lamina Terminalis,Preoptico-Hypothalamic Area,Area, Preoptico-Hypothalamic,Areas, Preoptico-Hypothalamic,Preoptico Hypothalamic Area,Preoptico-Hypothalamic Areas
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D007425 Intracellular Membranes Thin structures that encapsulate subcellular structures or ORGANELLES in EUKARYOTIC CELLS. They include a variety of membranes associated with the CELL NUCLEUS; the MITOCHONDRIA; the GOLGI APPARATUS; the ENDOPLASMIC RETICULUM; LYSOSOMES; PLASTIDS; and VACUOLES. Membranes, Intracellular,Intracellular Membrane,Membrane, Intracellular
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D004622 Embryo, Mammalian The entity of a developing mammal (MAMMALS), generally from the cleavage of a ZYGOTE to the end of embryonic differentiation of basic structures. For the human embryo, this represents the first two months of intrauterine development preceding the stages of the FETUS. Embryonic Structures, Mammalian,Mammalian Embryo,Mammalian Embryo Structures,Mammalian Embryonic Structures,Embryo Structure, Mammalian,Embryo Structures, Mammalian,Embryonic Structure, Mammalian,Embryos, Mammalian,Mammalian Embryo Structure,Mammalian Embryonic Structure,Mammalian Embryos,Structure, Mammalian Embryo,Structure, Mammalian Embryonic,Structures, Mammalian Embryo,Structures, Mammalian Embryonic
D005314 Embryonic and Fetal Development Morphological and physiological development of EMBRYOS or FETUSES. Embryo and Fetal Development,Prenatal Programming,Programming, Prenatal
D000375 Aging The gradual irreversible changes in structure and function of an organism that occur as a result of the passage of time. Senescence,Aging, Biological,Biological Aging
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

A N van den Pol, and L Kogelman, and P Ghosh, and P Liljelund, and C Blackstone
November 2004, Journal of neurophysiology,
A N van den Pol, and L Kogelman, and P Ghosh, and P Liljelund, and C Blackstone
November 2003, Nature,
A N van den Pol, and L Kogelman, and P Ghosh, and P Liljelund, and C Blackstone
November 1994, The Journal of comparative neurology,
A N van den Pol, and L Kogelman, and P Ghosh, and P Liljelund, and C Blackstone
May 1993, Neuroscience letters,
A N van den Pol, and L Kogelman, and P Ghosh, and P Liljelund, and C Blackstone
January 2005, Current topics in medicinal chemistry,
A N van den Pol, and L Kogelman, and P Ghosh, and P Liljelund, and C Blackstone
January 2002, Neuroscience,
A N van den Pol, and L Kogelman, and P Ghosh, and P Liljelund, and C Blackstone
December 1999, Neuroreport,
A N van den Pol, and L Kogelman, and P Ghosh, and P Liljelund, and C Blackstone
January 1992, Life sciences,
A N van den Pol, and L Kogelman, and P Ghosh, and P Liljelund, and C Blackstone
November 2006, Experimental neurology,
A N van den Pol, and L Kogelman, and P Ghosh, and P Liljelund, and C Blackstone
August 1998, Journal of neurochemistry,
Copied contents to your clipboard!