1,25(OH)2-16ene-vitamin D3 is a potent antileukemic agent with low potential to cause hypercalcemia. 1994

S J Jung, and Y Y Lee, and S Pakkala, and S de Vos, and E Elstner, and A W Norman, and J Green, and M Uskokovic, and H P Koeffler
Pusan Women's Junior College, Korea.

Compounds that induce cancer cells to differentiate are clinically effective for several types of malignancies. The 1,25-dihydroxyvitamin D3[1,25(OH)2D3(C)] induces leukemic cells, including HL-60, to differentiate and/or no longer proliferate, but it causes hypercalcemia. Development of vitamin D analogs that are more potent in their abilities to affect leukemic cells without causing greater hypercalcemia, may be useful therapeutically. A novel analog [1,25(OH)2-16ene-D3(HM)] has a double bond between C-16 and C-17; it appears to be an extremely effective antileukemic agent with the same or fewer effects on serum calciums. We define the potency of this compound and compare it with seven, previously reported, potent analogs of 1,25(OH)2D3. HM inhibited clonal growth of HL-60 cells by 50% at 1.5 x 10(-11) M. This was about equipotent to 1,25(OH)2-16ene-23yne-D3(V), about 100-fold more potent than many of the other analogs, and 1000-fold more potent than 1,25(OH)2D3. The rank order of leukemic inhibitory activity was: 1,25(OH)2-16ene-D3(HM) > or = 1,25(OH)2- 16ene-23yne-D3(V) > 1,25(OH)2-23ene-D3(EX) = 1,24(OH)2-22ene-24-cyclopropyl-D3(BT) = 22-oxa- 1,25(OH)2D3(EU) = 1,25(OH)2-24-homo-D3(ER) > 1,25(OH)2D3(C) > 1,25(OH)2-24- dihomo-D3(ES). The rank order of their effects on induction of differentiation of HL-60 cells, as measured by superoxide production and nonspecific esterase activity, was similar to their antiproliferative activities. In contrast, each analog slightly stimulated proliferation of normal human myeloid clonal growth. Serum calcium levels were the same or slightly less when either 1,25(OH)2-16ene-D3(HM) or 1,25(OH)2D3 (0.0625, 0.125, or 0.25 microgram) was given intraperitoneally to mice for 5 weeks. HM bound to 1,25(OH)2D3 receptors about 1.5-fold more avidly than 1,25(OH)2D3. In fact, this vitamin D3 appears to be the most avid binder to 1,25(OH)2D3 receptors that has been identified to date. In contrast, HM had a greater than 50-fold lower affinity for the D-binding proteins as compared with 1,25(OH)2D3, thus increasing the availability of the compound for target tissues. Further differentiation experiments showed that HM was more potent than 1,25(OH)2D3 in the presence of serum, but was equipotent in serum-free conditions. Taken together, our experiments suggest that 1,25(OH)2-16ene-D3(HM) may be more potent than 1,25(OH)2D3(C) because of its higher affinity to the 1,25(OH)2D3 receptors and its low affinity to the D-binding protein present in serum. HM is an ideal compound for clinical studies including patients with preleukemia and other neoplasia, as well as several skin disorders, such as psoriasis.

UI MeSH Term Description Entries
D002117 Calcitriol The physiologically active form of vitamin D. It is formed primarily in the kidney by enzymatic hydroxylation of 25-hydroxycholecalciferol (CALCIFEDIOL). Its production is stimulated by low blood calcium levels and parathyroid hormone. Calcitriol increases intestinal absorption of calcium and phosphorus, and in concert with parathyroid hormone increases bone resorption. 1 alpha,25-Dihydroxycholecalciferol,1 alpha,25-Dihydroxyvitamin D3,1, 25-(OH)2D3,1,25(OH)2D3,1,25-Dihydroxycholecalciferol,1,25-Dihydroxyvitamin D3,1 alpha, 25-dihydroxy-20-epi-Vitamin D3,1,25(OH)2-20epi-D3,1,25-dihydroxy-20-epi-Vitamin D3,20-epi-1alpha,25-dihydroxycholecaliferol,Bocatriol,Calcijex,Calcitriol KyraMed,Calcitriol-Nefro,Decostriol,MC-1288,MC1288,Osteotriol,Renatriol,Rocaltrol,Silkis,Sitriol,Soltriol,Tirocal,1 alpha,25 Dihydroxyvitamin D3,1,25 Dihydroxycholecalciferol,1,25 Dihydroxyvitamin D3,1,25 dihydroxy 20 epi Vitamin D3,Calcitriol Nefro,D3, 1 alpha,25-Dihydroxyvitamin,D3, 1,25-Dihydroxyvitamin,D3, 1,25-dihydroxy-20-epi-Vitamin,KyraMed, Calcitriol,MC 1288
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002762 Cholecalciferol Derivative of 7-dehydroxycholesterol formed by ULTRAVIOLET RAYS breaking of the C9-C10 bond. It differs from ERGOCALCIFEROL in having a single bond between C22 and C23 and lacking a methyl group at C24. Vitamin D 3,(3 beta,5Z,7E)-9,10-Secocholesta-5,7,10(19)-trien-3-ol,Calciol,Cholecalciferols,Vitamin D3
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006934 Hypercalcemia Abnormally high level of calcium in the blood. Milk-Alkali Syndrome,Hypercalcemias,Milk Alkali Syndrome,Syndrome, Milk-Alkali
D000970 Antineoplastic Agents Substances that inhibit or prevent the proliferation of NEOPLASMS. Anticancer Agent,Antineoplastic,Antineoplastic Agent,Antineoplastic Drug,Antitumor Agent,Antitumor Drug,Cancer Chemotherapy Agent,Cancer Chemotherapy Drug,Anticancer Agents,Antineoplastic Drugs,Antineoplastics,Antitumor Agents,Antitumor Drugs,Cancer Chemotherapy Agents,Cancer Chemotherapy Drugs,Chemotherapeutic Anticancer Agents,Chemotherapeutic Anticancer Drug,Agent, Anticancer,Agent, Antineoplastic,Agent, Antitumor,Agent, Cancer Chemotherapy,Agents, Anticancer,Agents, Antineoplastic,Agents, Antitumor,Agents, Cancer Chemotherapy,Agents, Chemotherapeutic Anticancer,Chemotherapy Agent, Cancer,Chemotherapy Agents, Cancer,Chemotherapy Drug, Cancer,Chemotherapy Drugs, Cancer,Drug, Antineoplastic,Drug, Antitumor,Drug, Cancer Chemotherapy,Drug, Chemotherapeutic Anticancer,Drugs, Antineoplastic,Drugs, Antitumor,Drugs, Cancer Chemotherapy

Related Publications

S J Jung, and Y Y Lee, and S Pakkala, and S de Vos, and E Elstner, and A W Norman, and J Green, and M Uskokovic, and H P Koeffler
February 2008, International journal of oncology,
S J Jung, and Y Y Lee, and S Pakkala, and S de Vos, and E Elstner, and A W Norman, and J Green, and M Uskokovic, and H P Koeffler
December 1994, Endocrinology,
S J Jung, and Y Y Lee, and S Pakkala, and S de Vos, and E Elstner, and A W Norman, and J Green, and M Uskokovic, and H P Koeffler
January 2004, Hormone research,
S J Jung, and Y Y Lee, and S Pakkala, and S de Vos, and E Elstner, and A W Norman, and J Green, and M Uskokovic, and H P Koeffler
April 1999, Der Internist,
S J Jung, and Y Y Lee, and S Pakkala, and S de Vos, and E Elstner, and A W Norman, and J Green, and M Uskokovic, and H P Koeffler
December 1994, Transplantation proceedings,
S J Jung, and Y Y Lee, and S Pakkala, and S de Vos, and E Elstner, and A W Norman, and J Green, and M Uskokovic, and H P Koeffler
February 1979, Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme,
S J Jung, and Y Y Lee, and S Pakkala, and S de Vos, and E Elstner, and A W Norman, and J Green, and M Uskokovic, and H P Koeffler
January 1990, Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association,
S J Jung, and Y Y Lee, and S Pakkala, and S de Vos, and E Elstner, and A W Norman, and J Green, and M Uskokovic, and H P Koeffler
August 1987, British journal of haematology,
S J Jung, and Y Y Lee, and S Pakkala, and S de Vos, and E Elstner, and A W Norman, and J Green, and M Uskokovic, and H P Koeffler
October 1998, Steroids,
S J Jung, and Y Y Lee, and S Pakkala, and S de Vos, and E Elstner, and A W Norman, and J Green, and M Uskokovic, and H P Koeffler
January 1987, Clinical nephrology,
Copied contents to your clipboard!