Identification of peplomer cleavage site mutations arising during persistence of MHV-A59. 1993

J L Gombold, and S T Hingley, and S R Weiss
Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia 19104-6076.

Primary mouse glial cell cultures were infected with mouse hepatitis virus strain A59 (MHV-A59) and maintained over an 18 week period. Viruses isolated from these cultures 16-18 weeks postinfection produce small plaques on fibroblasts and cause only minimal levels of cell-to-cell fusion at times when wild type causes nearly complete cell fusion. However, when mutant-infected cultures were examined 24-36 hours postinfection approximately 90% of the cells were in syncytia showing that the fusion defect is not absolute but rather delayed. Addition of trypsin to mutant-infected cultures enhanced cell fusion a small (2- to 5-fold) but significant degree. Sequencing of portions of the spike genes of six fusion-defective mutants revealed that all contained the same single nucleotide mutation resulting in a substitution of aspartic acid for histidine in the spike cleavage signal. Mutant virions contained only the 180 kDa form of spike protein suggesting that this mutation prevented the normal proteolytic cleavage of the 180 kDa protein into the 90 kDa subunits. Examination of revertants of the mutants supports this hypothesis. Replacement of the negatively-charged aspartic acid with either the wild type histidine or a non-polar amino acid was associated with the restoration of spike protein cleavage and cell fusion.

UI MeSH Term Description Entries
D008562 Membrane Glycoproteins Glycoproteins found on the membrane or surface of cells. Cell Surface Glycoproteins,Surface Glycoproteins,Cell Surface Glycoprotein,Membrane Glycoprotein,Surface Glycoprotein,Glycoprotein, Cell Surface,Glycoprotein, Membrane,Glycoprotein, Surface,Glycoproteins, Cell Surface,Glycoproteins, Membrane,Glycoproteins, Surface,Surface Glycoprotein, Cell,Surface Glycoproteins, Cell
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009457 Neuroglia The non-neuronal cells of the nervous system. They not only provide physical support, but also respond to injury, regulate the ionic and chemical composition of the extracellular milieu, participate in the BLOOD-BRAIN BARRIER and BLOOD-RETINAL BARRIER, form the myelin insulation of nervous pathways, guide neuronal migration during development, and exchange metabolites with neurons. Neuroglia have high-affinity transmitter uptake systems, voltage-dependent and transmitter-gated ion channels, and can release transmitters, but their role in signaling (as in many other functions) is unclear. Bergmann Glia,Bergmann Glia Cells,Bergmann Glial Cells,Glia,Glia Cells,Satellite Glia,Satellite Glia Cells,Satellite Glial Cells,Glial Cells,Neuroglial Cells,Bergmann Glia Cell,Bergmann Glial Cell,Cell, Bergmann Glia,Cell, Bergmann Glial,Cell, Glia,Cell, Glial,Cell, Neuroglial,Cell, Satellite Glia,Cell, Satellite Glial,Glia Cell,Glia Cell, Bergmann,Glia Cell, Satellite,Glia, Bergmann,Glia, Satellite,Glial Cell,Glial Cell, Bergmann,Glial Cell, Satellite,Glias,Neuroglial Cell,Neuroglias,Satellite Glia Cell,Satellite Glial Cell,Satellite Glias
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D010948 Viral Plaque Assay Method for measuring viral infectivity and multiplication in CULTURED CELLS. Clear lysed areas or plaques develop as the VIRAL PARTICLES are released from the infected cells during incubation. With some VIRUSES, the cells are killed by a cytopathic effect; with others, the infected cells are not killed but can be detected by their hemadsorptive ability. Sometimes the plaque cells contain VIRAL ANTIGENS which can be measured by IMMUNOFLUORESCENCE. Bacteriophage Plaque Assay,Assay, Bacteriophage Plaque,Assay, Viral Plaque,Assays, Bacteriophage Plaque,Assays, Viral Plaque,Bacteriophage Plaque Assays,Plaque Assay, Bacteriophage,Plaque Assay, Viral,Plaque Assays, Bacteriophage,Plaque Assays, Viral,Viral Plaque Assays
D011498 Protein Precursors Precursors, Protein
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002459 Cell Fusion Fusion of somatic cells in vitro or in vivo, which results in somatic cell hybridization. Cell Fusions,Fusion, Cell,Fusions, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell

Related Publications

J L Gombold, and S T Hingley, and S R Weiss
January 1995, Advances in experimental medicine and biology,
J L Gombold, and S T Hingley, and S R Weiss
January 1984, Advances in experimental medicine and biology,
J L Gombold, and S T Hingley, and S R Weiss
January 1998, Advances in experimental medicine and biology,
J L Gombold, and S T Hingley, and S R Weiss
January 1987, Advances in experimental medicine and biology,
J L Gombold, and S T Hingley, and S R Weiss
January 1998, Advances in experimental medicine and biology,
J L Gombold, and S T Hingley, and S R Weiss
January 1984, Advances in experimental medicine and biology,
J L Gombold, and S T Hingley, and S R Weiss
January 2006, Advances in experimental medicine and biology,
J L Gombold, and S T Hingley, and S R Weiss
June 1995, Journal of virology,
Copied contents to your clipboard!