Tumor necrosis factor alpha decreases 1,25-dihydroxyvitamin D3 receptors in osteoblastic ROS 17/2.8 cells. 1993

N Mayur, and S Lewis, and B D Catherwood, and M S Nanes
Division of Endocrinology, Emory University School of Medicine, Atlanta, Georgia.

Bone remodeling is a complex process regulated by systemic hormones, local cytokines, and growth factors. One cytokine, tumor necrosis factor alpha (TNF-alpha), is known to have potent inhibitory effects on osteoblast matrix protein production and to stimulate osteoclast recruitment. We have previously shown that TNF-alpha inhibits 1,25-(OH)2D3-stimulated synthesis of bone gla protein (BGP), an abundant and osteoblast-specific matrix constituent. We hypothesized that the mechanism of TNF-alpha action included inhibition of intracellular 1,25-(OH)2D3 receptor (VDR) number or function. To test this, the osteoblastic cell line ROS 17/2.8 was cultured in the presence or absence of TNF-alpha (100 ng/ml), and binding of [3H]1,25-(OH)2D3 to 0.3 M KCl extracts of cytosol was measured by equilibrium assay. Specific [3H]1,25-(OH)2D3 binding decreased 70%, 25 h after addition of TNF-alpha. The decrease in [3H]1,25-(OH)2D3 binding was seen by 18 h, was sustained throughout the 72 h culture period, and was greater in low-density cultures. Scatchard analysis confirmed that TNF-alpha (100 ng/ml for 24 h) caused a decrease in the number of binding sites without change in VDR affinity. Northern analysis with a VDR riboprobe revealed that the decrease in VDR occurred without a change in the 4.4 kb steady-state VDR mRNA [VDR/cyclophilin mRNA signal ratio: control, 2.25; TNF-alpha, 2.24 (24 h), 2.17 (40 h), n = 2 flasks/time point]. These results suggest that TNF-alpha action on osteoblastic cells includes an inhibitory effect on VDR number at a point distal to the synthesis of VDR mRNA.

UI MeSH Term Description Entries
D010006 Osteoblasts Bone-forming cells which secrete an EXTRACELLULAR MATRIX. HYDROXYAPATITE crystals are then deposited into the matrix to form bone. Osteoblast
D011869 Radioligand Assay Quantitative determination of receptor (binding) proteins in body fluids or tissue using radioactively labeled binding reagents (e.g., antibodies, intracellular receptors, plasma binders). Protein-Binding Radioassay,Radioreceptor Assay,Assay, Radioligand,Assay, Radioreceptor,Assays, Radioligand,Assays, Radioreceptor,Protein Binding Radioassay,Protein-Binding Radioassays,Radioassay, Protein-Binding,Radioassays, Protein-Binding,Radioligand Assays,Radioreceptor Assays
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002117 Calcitriol The physiologically active form of vitamin D. It is formed primarily in the kidney by enzymatic hydroxylation of 25-hydroxycholecalciferol (CALCIFEDIOL). Its production is stimulated by low blood calcium levels and parathyroid hormone. Calcitriol increases intestinal absorption of calcium and phosphorus, and in concert with parathyroid hormone increases bone resorption. 1 alpha,25-Dihydroxycholecalciferol,1 alpha,25-Dihydroxyvitamin D3,1, 25-(OH)2D3,1,25(OH)2D3,1,25-Dihydroxycholecalciferol,1,25-Dihydroxyvitamin D3,1 alpha, 25-dihydroxy-20-epi-Vitamin D3,1,25(OH)2-20epi-D3,1,25-dihydroxy-20-epi-Vitamin D3,20-epi-1alpha,25-dihydroxycholecaliferol,Bocatriol,Calcijex,Calcitriol KyraMed,Calcitriol-Nefro,Decostriol,MC-1288,MC1288,Osteotriol,Renatriol,Rocaltrol,Silkis,Sitriol,Soltriol,Tirocal,1 alpha,25 Dihydroxyvitamin D3,1,25 Dihydroxycholecalciferol,1,25 Dihydroxyvitamin D3,1,25 dihydroxy 20 epi Vitamin D3,Calcitriol Nefro,D3, 1 alpha,25-Dihydroxyvitamin,D3, 1,25-Dihydroxyvitamin,D3, 1,25-dihydroxy-20-epi-Vitamin,KyraMed, Calcitriol,MC 1288
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured
D014409 Tumor Necrosis Factor-alpha Serum glycoprotein produced by activated MACROPHAGES and other mammalian MONONUCLEAR LEUKOCYTES. It has necrotizing activity against tumor cell lines and increases ability to reject tumor transplants. Also known as TNF-alpha, it is only 30% homologous to TNF-beta (LYMPHOTOXIN), but they share TNF RECEPTORS. Cachectin,TNF-alpha,Tumor Necrosis Factor Ligand Superfamily Member 2,Cachectin-Tumor Necrosis Factor,TNF Superfamily, Member 2,TNFalpha,Tumor Necrosis Factor,Cachectin Tumor Necrosis Factor,Tumor Necrosis Factor alpha
D015152 Blotting, Northern Detection of RNA that has been electrophoretically separated and immobilized by blotting on nitrocellulose or other type of paper or nylon membrane followed by hybridization with labeled NUCLEIC ACID PROBES. Northern Blotting,Blot, Northern,Northern Blot,Blots, Northern,Blottings, Northern,Northern Blots,Northern Blottings
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

N Mayur, and S Lewis, and B D Catherwood, and M S Nanes
February 2002, Molecular and cellular endocrinology,
N Mayur, and S Lewis, and B D Catherwood, and M S Nanes
October 1986, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research,
N Mayur, and S Lewis, and B D Catherwood, and M S Nanes
December 1992, Biochimica et biophysica acta,
N Mayur, and S Lewis, and B D Catherwood, and M S Nanes
April 2006, Cell biology international,
N Mayur, and S Lewis, and B D Catherwood, and M S Nanes
December 1992, Blood,
N Mayur, and S Lewis, and B D Catherwood, and M S Nanes
March 1990, Toxicology and applied pharmacology,
N Mayur, and S Lewis, and B D Catherwood, and M S Nanes
July 1989, Endocrinology,
Copied contents to your clipboard!