Use of calcium channel antagonists for cardiovascular disease. 1993

K C Yedinak

Until recently, only three calcium channel antagonists--verapamil, diltiazem and nifedipine--were available for managing cardiovascular disorders such as hypertension and ischemic heart disease. In the past few years, however, several dihydropyridine calcium channel antagonists, including nicardipine, isradipine, felodipine, nimodipine, and amlodipine, have been marketed. Others are currently awaiting FDA approval. In addition, bepridil, which belongs to a new class of calcium channel antagonists, has recently been marketed for refractory angina pectoris. Clinical uses of calcium channel antagonists have been expanded since the 1970s to include management of cardiovascular disorders such as supraventricular arrhythmias, CHF secondary to diastolic dysfunction, and myocardial reinfarction in selected patients. Calcium channel antagonists are also being investigated for prevention of atherosclerosis. Calcium channel antagonists are a heterogeneous group of pharmacologic agents. Differences in tissue selectivity are largely responsible for the variations in hemodynamic and electrophysiologic properties of these agents. Thus, their clinical uses and side effect profiles differ. These differences must be taken into consideration in the selection of the most appropriate agent for a specific indication. Potential advantages of some of the newer dihydropyridine calcium channel antagonists include less frequent dosing (amlodipine and isradipine) and little or no negative inotropic effect (nicardipine, felodipine, amlodipine, isradipine) compared with the prototype calcium channel antagonists. Additional clinical experience with these newer agents is required, however, before their role in the management of cardiovascular disorders can be fully delineated. The availability of sustained-release formulations of verapamil, diltiazem, nifedipine, felodipine, and nicardipine, as well as the recent marketing of calcium channel antagonists with relatively long half-lives (amlodipine and isradipine), makes once- or twice-daily dosing possible with most calcium channel blockers. However, selection of a particular agent will depend on several factors, including clinical efficacy, side effect profile, cost, and patient characteristics such as concomitant disease states and baseline hemodynamic status.

UI MeSH Term Description Entries
D006973 Hypertension Persistently high systemic arterial BLOOD PRESSURE. Based on multiple readings (BLOOD PRESSURE DETERMINATION), hypertension is currently defined as when SYSTOLIC PRESSURE is consistently greater than 140 mm Hg or when DIASTOLIC PRESSURE is consistently 90 mm Hg or more. Blood Pressure, High,Blood Pressures, High,High Blood Pressure,High Blood Pressures
D009203 Myocardial Infarction NECROSIS of the MYOCARDIUM caused by an obstruction of the blood supply to the heart (CORONARY CIRCULATION). Cardiovascular Stroke,Heart Attack,Myocardial Infarct,Cardiovascular Strokes,Heart Attacks,Infarct, Myocardial,Infarction, Myocardial,Infarctions, Myocardial,Infarcts, Myocardial,Myocardial Infarctions,Myocardial Infarcts,Stroke, Cardiovascular,Strokes, Cardiovascular
D002121 Calcium Channel Blockers A class of drugs that act by selective inhibition of calcium influx through cellular membranes. Calcium Antagonists, Exogenous,Calcium Blockaders, Exogenous,Calcium Channel Antagonist,Calcium Channel Blocker,Calcium Channel Blocking Drug,Calcium Inhibitors, Exogenous,Channel Blockers, Calcium,Exogenous Calcium Blockader,Exogenous Calcium Inhibitor,Calcium Channel Antagonists,Calcium Channel Blocking Drugs,Exogenous Calcium Antagonists,Exogenous Calcium Blockaders,Exogenous Calcium Inhibitors,Antagonist, Calcium Channel,Antagonists, Calcium Channel,Antagonists, Exogenous Calcium,Blockader, Exogenous Calcium,Blocker, Calcium Channel,Blockers, Calcium Channel,Calcium Blockader, Exogenous,Calcium Inhibitor, Exogenous,Channel Antagonist, Calcium,Channel Blocker, Calcium,Inhibitor, Exogenous Calcium
D002318 Cardiovascular Diseases Pathological conditions involving the CARDIOVASCULAR SYSTEM including the HEART; the BLOOD VESSELS; or the PERICARDIUM. Adverse Cardiac Event,Cardiac Events,Major Adverse Cardiac Events,Adverse Cardiac Events,Cardiac Event,Cardiac Event, Adverse,Cardiac Events, Adverse,Cardiovascular Disease,Disease, Cardiovascular,Event, Cardiac
D006333 Heart Failure A heterogeneous condition in which the heart is unable to pump out sufficient blood to meet the metabolic need of the body. Heart failure can be caused by structural defects, functional abnormalities (VENTRICULAR DYSFUNCTION), or a sudden overload beyond its capacity. Chronic heart failure is more common than acute heart failure which results from sudden insult to cardiac function, such as MYOCARDIAL INFARCTION. Cardiac Failure,Heart Decompensation,Congestive Heart Failure,Heart Failure, Congestive,Heart Failure, Left-Sided,Heart Failure, Right-Sided,Left-Sided Heart Failure,Myocardial Failure,Right-Sided Heart Failure,Decompensation, Heart,Heart Failure, Left Sided,Heart Failure, Right Sided,Left Sided Heart Failure,Right Sided Heart Failure
D006439 Hemodynamics The movement and the forces involved in the movement of the blood through the CARDIOVASCULAR SYSTEM. Hemodynamic
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000787 Angina Pectoris The symptom of paroxysmal pain consequent to MYOCARDIAL ISCHEMIA usually of distinctive character, location and radiation. It is thought to be provoked by a transient stressful situation during which the oxygen requirements of the MYOCARDIUM exceed that supplied by the CORONARY CIRCULATION. Angor Pectoris,Stenocardia,Stenocardias
D001161 Arteriosclerosis Thickening and loss of elasticity of the walls of ARTERIES of all sizes. There are many forms classified by the types of lesions and arteries involved, such as ATHEROSCLEROSIS with fatty lesions in the ARTERIAL INTIMA of medium and large muscular arteries. Arterioscleroses
D013345 Subarachnoid Hemorrhage Bleeding into the intracranial or spinal SUBARACHNOID SPACE, most resulting from INTRACRANIAL ANEURYSM rupture. It can occur after traumatic injuries (SUBARACHNOID HEMORRHAGE, TRAUMATIC). Clinical features include HEADACHE; NAUSEA; VOMITING, nuchal rigidity, variable neurological deficits and reduced mental status. Hemorrhage, Subarachnoid,Perinatal Subarachnoid Hemorrhage,Subarachnoid Hemorrhage, Aneurysmal,Subarachnoid Hemorrhage, Spontaneous,SAH (Subarachnoid Hemorrhage),Subarachnoid Hemorrhage, Intracranial,Aneurysmal Subarachnoid Hemorrhage,Aneurysmal Subarachnoid Hemorrhages,Hemorrhage, Aneurysmal Subarachnoid,Hemorrhage, Intracranial Subarachnoid,Hemorrhage, Perinatal Subarachnoid,Hemorrhage, Spontaneous Subarachnoid,Hemorrhages, Aneurysmal Subarachnoid,Hemorrhages, Intracranial Subarachnoid,Hemorrhages, Perinatal Subarachnoid,Hemorrhages, Spontaneous Subarachnoid,Hemorrhages, Subarachnoid,Intracranial Subarachnoid Hemorrhage,Intracranial Subarachnoid Hemorrhages,Perinatal Subarachnoid Hemorrhages,SAHs (Subarachnoid Hemorrhage),Spontaneous Subarachnoid Hemorrhage,Spontaneous Subarachnoid Hemorrhages,Subarachnoid Hemorrhage, Perinatal,Subarachnoid Hemorrhages,Subarachnoid Hemorrhages, Aneurysmal,Subarachnoid Hemorrhages, Intracranial,Subarachnoid Hemorrhages, Perinatal,Subarachnoid Hemorrhages, Spontaneous

Related Publications

K C Yedinak
January 1997, British journal of hospital medicine,
K C Yedinak
October 1993, Drug and therapeutics bulletin,
K C Yedinak
May 1986, The New Zealand medical journal,
K C Yedinak
July 1995, The Journal of pharmacology and experimental therapeutics,
K C Yedinak
September 2005, Obstetrics and gynecology clinics of North America,
K C Yedinak
January 1986, Acta cardiologica,
K C Yedinak
March 2006, Expert opinion on emerging drugs,
K C Yedinak
October 1989, The British journal of clinical practice,
K C Yedinak
January 1989, Fundamental & clinical pharmacology,
Copied contents to your clipboard!