Muscarinic stimulation of tracheal smooth muscle cells activates large-conductance Ca(2+)-dependent K+ channel. 1993

G R Wade, and S M Sims
Department of Physiology, University of Western Ontario, London, Canada.

We investigated the regulation of the large-conductance Ca(2+)-dependent K+ (KCa) channel by acetylcholine (ACh) in freshly dissociated tracheal smooth muscle cells. Channels were recorded in the cell-attached patch configuration, and cells were stimulated with ACh, muscarine, or caffeine. We identified KCa channel activity based on 1) the voltage dependence of channel opening; 2) the large unitary conductance (242 +/- 5 pS with symmetrical 135 mM K+); 3) dependence of the reversal potential on the [K+] gradient, shifting 56 +/- 3 mV/10-fold change in extracellular [K+]; and 4) opening of channels after elevation of cytosolic free Ca2+ concentration ([Ca2+]i) using the Ca2+ ionophore A23187. When cells were bathed either in a physiological saline solution or a solution containing 135 mM K+ (to clamp cell membrane potential near 0 mV), ACh caused contraction of cells and activation of voltage-dependent channels. With 135 mM extracellular K+, the channels activated by ACh had a unitary conductance of 247 +/- 10 pS, and currents reversed near the K+ equilibrium potential (-1 +/- 1 mV). The effects of ACh were reversible, blocked by atropine, and mimicked by muscarine. From these characteristics we conclude that muscarinic stimulation of canine tracheal smooth muscle cells leads to activation of the large-conductance KCa channel. Because the KCa channels were isolated from ACh by the patch pipette, the increased channel activity was probably mediated by a cytosolic second messenger. ACh shifted the threshold for KCa channel opening to less positive membrane potentials, similar to that seen with elevation of [Ca2+]i.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D008297 Male Males
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009130 Muscle, Smooth Unstriated and unstriped muscle, one of the muscles of the internal organs, blood vessels, hair follicles, etc. Contractile elements are elongated, usually spindle-shaped cells with centrally located nuclei. Smooth muscle fibers are bound together into sheets or bundles by reticular fibers and frequently elastic nets are also abundant. (From Stedman, 25th ed) Muscle, Involuntary,Smooth Muscle,Involuntary Muscle,Involuntary Muscles,Muscles, Involuntary,Muscles, Smooth,Smooth Muscles
D010277 Parasympathomimetics Drugs that mimic the effects of parasympathetic nervous system activity. Included here are drugs that directly stimulate muscarinic receptors and drugs that potentiate cholinergic activity, usually by slowing the breakdown of acetylcholine (CHOLINESTERASE INHIBITORS). Drugs that stimulate both sympathetic and parasympathetic postganglionic neurons (GANGLIONIC STIMULANTS) are not included here. Parasympathomimetic Agents,Parasympathomimetic Drugs,Parasympathomimetic Effect,Parasympathomimetic Effects,Agents, Parasympathomimetic,Drugs, Parasympathomimetic,Effect, Parasympathomimetic,Effects, Parasympathomimetic
D002110 Caffeine A methylxanthine naturally occurring in some beverages and also used as a pharmacological agent. Caffeine's most notable pharmacological effect is as a central nervous system stimulant, increasing alertness and producing agitation. It also relaxes SMOOTH MUSCLE, stimulates CARDIAC MUSCLE, stimulates DIURESIS, and appears to be useful in the treatment of some types of headache. Several cellular actions of caffeine have been observed, but it is not entirely clear how each contributes to its pharmacological profile. Among the most important are inhibition of cyclic nucleotide PHOSPHODIESTERASES, antagonism of ADENOSINE RECEPTORS, and modulation of intracellular calcium handling. 1,3,7-Trimethylxanthine,Caffedrine,Coffeinum N,Coffeinum Purrum,Dexitac,Durvitan,No Doz,Percoffedrinol N,Percutaféine,Quick-Pep,Vivarin,Quick Pep,QuickPep
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D004553 Electric Conductivity The ability of a substrate to allow the passage of ELECTRONS. Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical
D005260 Female Females
D000109 Acetylcholine A neurotransmitter found at neuromuscular junctions, autonomic ganglia, parasympathetic effector junctions, a subset of sympathetic effector junctions, and at many sites in the central nervous system. 2-(Acetyloxy)-N,N,N-trimethylethanaminium,Acetilcolina Cusi,Acetylcholine Bromide,Acetylcholine Chloride,Acetylcholine Fluoride,Acetylcholine Hydroxide,Acetylcholine Iodide,Acetylcholine L-Tartrate,Acetylcholine Perchlorate,Acetylcholine Picrate,Acetylcholine Picrate (1:1),Acetylcholine Sulfate (1:1),Bromoacetylcholine,Chloroacetylcholine,Miochol,Acetylcholine L Tartrate,Bromide, Acetylcholine,Cusi, Acetilcolina,Fluoride, Acetylcholine,Hydroxide, Acetylcholine,Iodide, Acetylcholine,L-Tartrate, Acetylcholine,Perchlorate, Acetylcholine

Related Publications

G R Wade, and S M Sims
July 1997, The Journal of general physiology,
G R Wade, and S M Sims
October 1996, The American journal of physiology,
G R Wade, and S M Sims
April 2005, The Journal of membrane biology,
Copied contents to your clipboard!