The raphe nuclei of the cat brain stem: a topographical atlas of their efferent projections as revealed by autoradiography. 1976

P Bobillier, and S Seguin, and F Petitjean, and D Salvert, and M Touret, and M Jouvet

Stereotaxic injections of [14C]leucine were made in nulei raphe centralis superior, raphe dorsalis, raphe magnus and raphe pontis of the cat. The organization of the regional connections was outlined in a stereotaxic atlas using the autoradiographic tracing method: the majority of the ascending pathways from the rostral raphe nuclei are directed mainly through a ventrolateral bundle via the ventral tegmental area of Tsai, with some lateral extensions to the substantia nigra, and then through the fields of Forel and the zona incerta. More rostrally the fibers are joined to the medial forebrain bundle through the hypothalamic region up to the preoptic area or the diagonal band of Broca. Multiple divisions leave this tract towards the epithalamic or the intralaminar thalamic nuclei, the stria terminalis, the septum, the capsula interna and the ansa lenticularis. The bulk of the rostral projections terminates in the frontal lobe, while some labeling is scarcely distributed throughout the rest of the neocortex. The projections of nucleus (n.) raphe centralis superior are specifically associated with the n. interpeduncularis, the mammillary bodies and the hippocampal formation while the n. raphe dorsalis innervates selectively the lateral geniculate bodies, striatus, piriform lobes, olfactory bulb and amygdala. The rest of the ascending fibers form the centrolateral or the dorsal ascending tracts radiating either in the reticular mesencephalic formation or in the periventricular gray matter. On the contrary there are heavy descending projections from n. raphe centralis superior which distribute to the main nuclei of the brain stem, the central gray matter and the cerebellum. The ascending projections form the caudal raphe nuclei are much less dense. They disseminate mainly in the colliculus superior, the pretectum, the nucleus of the posterior commissure, the preoculomotor complex and the intralaminar nuclei of the thalamus. From n. raphe pontis, a dense labeling is selectively localized at the n. paraventricularis hypothalami with some rostral extensions to limbic areas. Diffuse caudal and rostral projections from both nuclei are observed in the mesencephalic, pontobulbar reticular formation and the cerebellum. The main differences come from the specific localization of their descending bulbospinal tracts inside the lateroventral funiculus of the spinal cervical cord.

UI MeSH Term Description Entries
D007031 Hypothalamus Ventral part of the DIENCEPHALON extending from the region of the OPTIC CHIASM to the caudal border of the MAMMILLARY BODIES and forming the inferior and lateral walls of the THIRD VENTRICLE. Lamina Terminalis,Preoptico-Hypothalamic Area,Area, Preoptico-Hypothalamic,Areas, Preoptico-Hypothalamic,Preoptico Hypothalamic Area,Preoptico-Hypothalamic Areas
D008326 Mammillary Bodies A pair of nuclei and associated GRAY MATTER in the interpeduncular space rostral to the posterior perforated substance in the POSTERIOR HYPOTHALAMUS. Mamillary Bodies,Bodies, Mamillary,Bodies, Mammillary,Body, Mamillary,Body, Mammillary,Mamillary Body,Mammillary Body
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009476 Neurons, Efferent Neurons which send impulses peripherally to activate muscles or secretory cells. Efferent Neurons,Efferent Neuron,Neuron, Efferent
D009802 Oculomotor Nerve The 3d cranial nerve. The oculomotor nerve sends motor fibers to the levator muscles of the eyelid and to the superior rectus, inferior rectus, and inferior oblique muscles of the eye. It also sends parasympathetic efferents (via the ciliary ganglion) to the muscles controlling pupillary constriction and accommodation. The motor fibers originate in the oculomotor nuclei of the midbrain. Cranial Nerve III,Third Cranial Nerve,Nerve III,Nervus Oculomotorius,Cranial Nerve IIIs,Cranial Nerve, Third,Cranial Nerves, Third,Nerve IIIs,Nerve, Oculomotor,Nerve, Third Cranial,Nerves, Oculomotor,Nerves, Third Cranial,Oculomotor Nerves,Oculomotorius, Nervus,Third Cranial Nerves
D012154 Reticular Formation A region extending from the PONS & MEDULLA OBLONGATA through the MESENCEPHALON, characterized by a diversity of neurons of various sizes and shapes, arranged in different aggregations and enmeshed in a complicated fiber network. Formation, Reticular,Formations, Reticular,Reticular Formations
D001933 Brain Stem The part of the brain that connects the CEREBRAL HEMISPHERES with the SPINAL CORD. It consists of the MESENCEPHALON; PONS; and MEDULLA OBLONGATA. Brainstem,Truncus Cerebri,Brain Stems,Brainstems,Cerebri, Truncus,Cerebrus, Truncus,Truncus Cerebrus
D002250 Carbon Radioisotopes Unstable isotopes of carbon that decay or disintegrate emitting radiation. C atoms with atomic weights 10, 11, and 14-16 are radioactive carbon isotopes. Radioisotopes, Carbon
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D002535 Cerebral Aqueduct Narrow channel in the MESENCEPHALON that connects the third and fourth CEREBRAL VENTRICLES. Aqueduct of Sylvius,Aqueductus Cerebri,Mesencephalic Aqueduct,Mesencephalic Duct,Sylvian Aqueduct,Aqueduct, Cerebral,Aqueduct, Mesencephalic,Aqueduct, Sylvian,Aqueducts, Cerebral,Aqueducts, Mesencephalic,Aqueducts, Sylvian,Aqueductus Cerebrus,Cerebral Aqueducts,Cerebri, Aqueductus,Cerebrus, Aqueductus,Duct, Mesencephalic,Ducts, Mesencephalic,Mesencephalic Aqueducts,Mesencephalic Ducts,Sylvian Aqueducts,Sylvius Aqueduct

Related Publications

P Bobillier, and S Seguin, and F Petitjean, and D Salvert, and M Touret, and M Jouvet
September 1978, The Journal of comparative neurology,
P Bobillier, and S Seguin, and F Petitjean, and D Salvert, and M Touret, and M Jouvet
June 1985, Brain research,
P Bobillier, and S Seguin, and F Petitjean, and D Salvert, and M Touret, and M Jouvet
July 1988, Brain research,
P Bobillier, and S Seguin, and F Petitjean, and D Salvert, and M Touret, and M Jouvet
November 1979, Archives italiennes de biologie,
P Bobillier, and S Seguin, and F Petitjean, and D Salvert, and M Touret, and M Jouvet
March 1970, Kobe Daigaku Igakubu kiyo. Medical journal of Kobe University,
P Bobillier, and S Seguin, and F Petitjean, and D Salvert, and M Touret, and M Jouvet
May 1992, Brain research bulletin,
P Bobillier, and S Seguin, and F Petitjean, and D Salvert, and M Touret, and M Jouvet
January 1967, Journal of the neurological sciences,
P Bobillier, and S Seguin, and F Petitjean, and D Salvert, and M Touret, and M Jouvet
September 1993, The Journal of comparative neurology,
Copied contents to your clipboard!