Mitochondrial encephalomyopathies. 1993

S DiMauro, and C T Moraes
H. Houston Merritt Clinical Research Center for Muscular Dystrophy and Related Diseases, College of Physicians and Surgeons, Columbia University, New York, NY.

Mitochondrial diseases are uniquely interesting from a genetic point of view because mitochondria contain their own DNA (mtDNA) and are capable of synthesizing a small but vital set of proteins, all of which are components of respiratory chain complexes. Numerous mutations in mtDNA have been described in the past 5 years, and, it is, therefore, important for the clinician to keep in mind both some characteristic clinical presentations and, more importantly, some basic principles of "mitochondrial genetics," including heteroplasmy, the threshold effect, mitotic segregation, and maternal inheritance. The vast majority of mitochondrial proteins are encoded by nuclear DNA (nDNA) and have to be imported from the cytoplasm into mitochondria through a complex translocation machinery, which is also under the control of the nuclear genome. In addition, nDNA encodes several factors that control mtDNA replication, transcription, and translocation. Mitochondrial diseases due to mutations in nDNA are transmitted as mendelian traits and fall into three categories: (1) alterations of mitochondrial proteins; (2) alterations of mitochondrial protein importation; and (3) alterations of intergenomic communication. The first group of disorders can be further classified on the basis of the biochemical area affected, including defects of transport, defects of substrate utilization, defects of the Krebs cycle, defects of oxidation/phosphorylation coupling, and defects of the respiratory chain. The second group includes only few well-documented disorders but will certainly expand in the near future. The third group includes two conditions, an autosomal dominant form of progressive external ophthalmoplegia associated with multiple mtDNA deletions, and a quantitative defect of mtDNA (mtDNA depletion) causing severe infantile myopathy or hepatopathy.

UI MeSH Term Description Entries
D008938 Mitosis A type of CELL NUCLEUS division by means of which the two daughter nuclei normally receive identical complements of the number of CHROMOSOMES of the somatic cells of the species. M Phase, Mitotic,Mitotic M Phase,M Phases, Mitotic,Mitoses,Mitotic M Phases,Phase, Mitotic M,Phases, Mitotic M
D009097 Multienzyme Complexes Systems of enzymes which function sequentially by catalyzing consecutive reactions linked by common metabolic intermediates. They may involve simply a transfer of water molecules or hydrogen atoms and may be associated with large supramolecular structures such as MITOCHONDRIA or RIBOSOMES. Complexes, Multienzyme
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010088 Oxidoreductases The class of all enzymes catalyzing oxidoreduction reactions. The substrate that is oxidized is regarded as a hydrogen donor. The systematic name is based on donor:acceptor oxidoreductase. The recommended name will be dehydrogenase, wherever this is possible; as an alternative, reductase can be used. Oxidase is only used in cases where O2 is the acceptor. (Enzyme Nomenclature, 1992, p9) Dehydrogenases,Oxidases,Oxidoreductase,Reductases,Dehydrogenase,Oxidase,Reductase
D002872 Chromosome Deletion Actual loss of portion of a chromosome. Monosomy, Partial,Partial Monosomy,Deletion, Chromosome,Deletions, Chromosome,Monosomies, Partial,Partial Monosomies
D003576 Electron Transport Complex IV A multisubunit enzyme complex containing CYTOCHROME A GROUP; CYTOCHROME A3; two copper atoms; and 13 different protein subunits. It is the terminal oxidase complex of the RESPIRATORY CHAIN and collects electrons that are transferred from the reduced CYTOCHROME C GROUP and donates them to molecular OXYGEN, which is then reduced to water. The redox reaction is simultaneously coupled to the transport of PROTONS across the inner mitochondrial membrane. Cytochrome Oxidase,Cytochrome aa3,Cytochrome-c Oxidase,Cytochrome Oxidase Subunit III,Cytochrome a,a3,Cytochrome c Oxidase Subunit VIa,Cytochrome-c Oxidase (Complex IV),Cytochrome-c Oxidase Subunit III,Cytochrome-c Oxidase Subunit IV,Ferrocytochrome c Oxygen Oxidoreductase,Heme aa3 Cytochrome Oxidase,Pre-CTOX p25,Signal Peptide p25-Subunit IV Cytochrome Oxidase,Subunit III, Cytochrome Oxidase,p25 Presequence Peptide-Cytochrome Oxidase,Cytochrome c Oxidase,Cytochrome c Oxidase Subunit III,Cytochrome c Oxidase Subunit IV,Oxidase, Cytochrome,Oxidase, Cytochrome-c,Signal Peptide p25 Subunit IV Cytochrome Oxidase,p25 Presequence Peptide Cytochrome Oxidase
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004261 DNA Replication The process by which a DNA molecule is duplicated. Autonomous Replication,Replication, Autonomous,Autonomous Replications,DNA Replications,Replication, DNA,Replications, Autonomous,Replications, DNA
D004272 DNA, Mitochondrial Double-stranded DNA of MITOCHONDRIA. In eukaryotes, the mitochondrial GENOME is circular and codes for ribosomal RNAs, transfer RNAs, and about 10 proteins. Mitochondrial DNA,mtDNA
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

S DiMauro, and C T Moraes
September 1994, Nihon Naika Gakkai zasshi. The Journal of the Japanese Society of Internal Medicine,
S DiMauro, and C T Moraes
January 1989, Revue neurologique,
S DiMauro, and C T Moraes
October 1989, Acta neurologica,
S DiMauro, and C T Moraes
October 1998, Current opinion in neurology,
S DiMauro, and C T Moraes
August 1988, Neurologic clinics,
S DiMauro, and C T Moraes
April 1990, Presse medicale (Paris, France : 1983),
S DiMauro, and C T Moraes
December 1992, Current opinion in neurology and neurosurgery,
S DiMauro, and C T Moraes
January 2007, Handbook of clinical neurology,
S DiMauro, and C T Moraes
March 2003, Journal of neuropathology and experimental neurology,
S DiMauro, and C T Moraes
April 1992, Brain pathology (Zurich, Switzerland),
Copied contents to your clipboard!