Investigation of conformational equilibrium of polypeptides by internal coordinate stochastic dynamics. Met5-enkephalin. 1993

V E Dorofeyev, and A K Mazur
Pacific Institute of Bioorganic Chemistry, Russian Academy of Sciences, Vladivostok.

The equilibrium population of different conformational states of a polypeptide can in principle be obtained by a very long molecular dynamics simulation. The method of internal coordinate molecular dynamics earlier developed in this laboratory (A.K. Mazur and R.A. Abagyan J. Biomol. Struct. Dyn. 6,833 (1989)) allows one to use time steps much larger than usual for computing molecular trajectories. It is shown here that the sampling of the conformational space can be additionally enhanced by adding a random component to the set of forces applied to atoms. We describe the algorithms by which the random force is introduced and also a special method which excludes the fast rotation of polar hydrogens from equations of motion but keeps them movable. As a result the task stated in the title becomes realistic. Internal coordinate stochastic dynamics is applied for scanning the conformational space of the pentapeptide Met5-enkephalin which is a common test example widely used in theoretical studies. A large number of conformational transitions is observed during the 20 ns simulation starting from the global energy minimum thus allowing us to arrive at a nearly Boltzmann distribution of populations of conformational states. A few states are found which are distinguished by high apparent configurational entropy which turn out to correspond well to experimentally observed conformations of enkephalins.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D004744 Enkephalin, Methionine One of the endogenous pentapeptides with morphine-like activity. It differs from LEU-ENKEPHALIN by the amino acid METHIONINE in position 5. Its first four amino acid sequence is identical to the tetrapeptide sequence at the N-terminal of BETA-ENDORPHIN. Methionine Enkephalin,5-Methionine Enkephalin,Met(5)-Enkephalin,Met-Enkephalin,5 Methionine Enkephalin,Enkephalin, 5-Methionine,Met Enkephalin
D013269 Stochastic Processes Processes that incorporate some element of randomness, used particularly to refer to a time series of random variables. Process, Stochastic,Stochastic Process,Processes, Stochastic
D013816 Thermodynamics A rigorously mathematical analysis of energy relationships (heat, work, temperature, and equilibrium). It describes systems whose states are determined by thermal parameters, such as temperature, in addition to mechanical and electromagnetic parameters. (From Hawley's Condensed Chemical Dictionary, 12th ed) Thermodynamic
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D014961 X-Ray Diffraction The scattering of x-rays by matter, especially crystals, with accompanying variation in intensity due to interference effects. Analysis of the crystal structure of materials is performed by passing x-rays through them and registering the diffraction image of the rays (CRYSTALLOGRAPHY, X-RAY). (From McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Xray Diffraction,Diffraction, X-Ray,Diffraction, Xray,Diffractions, X-Ray,Diffractions, Xray,X Ray Diffraction,X-Ray Diffractions,Xray Diffractions

Related Publications

V E Dorofeyev, and A K Mazur
March 1998, Journal of computer-aided molecular design,
V E Dorofeyev, and A K Mazur
September 1981, Neuropharmacology,
V E Dorofeyev, and A K Mazur
December 2011, The European physical journal. E, Soft matter,
V E Dorofeyev, and A K Mazur
November 1977, Biochemical and biophysical research communications,
V E Dorofeyev, and A K Mazur
September 1996, European journal of biochemistry,
V E Dorofeyev, and A K Mazur
July 2016, The journal of physical chemistry. B,
V E Dorofeyev, and A K Mazur
February 1981, Brain research,
V E Dorofeyev, and A K Mazur
December 2016, Physical chemistry chemical physics : PCCP,
Copied contents to your clipboard!