Magnetic resonance imaging of coronary arteries: technique and preliminary results. 1993

D J Pennell, and J Keegan, and D N Firmin, and P D Gatehouse, and S R Underwood, and D B Longmore
Magnetic Resonance Unit, Royal Brompton National Heart and Lung Hospital, London.

BACKGROUND Coronary artery imaging is an important investigation for the management of coronary artery disease. The only reliable technique presently available, x ray contrast angiography, is invasive and is associated with a small morbidity and mortality. Alternative non-invasive imaging would be useful, but the small calibre and tortuosity of the coronary vessels, and cardiac and respiratory motion create formidable imaging problems. OBJECTIVE The development of rapid magnetic resonance imaging of the coronary arteries. METHODS 21 healthy controls and five patients with coronary artery disease established by x ray contrast angiography, of whom two had undergone bypass grafting. METHODS Magnetic resonance imaging was performed with gradient echoes and a segmented k-space technique, such that a complete image was acquired in 16 cardiac cycles during a breathhold. The signal from fat was suppressed and images were acquired in late diastole to reduce artefact from cardiac motion. An imaging strategy was developed for the proximal arteries, including longitudinal imaging from oblique planes defined according to the origins and the continuation of the arteries in the atrioventricular grooves or interventricular sulcus. RESULTS Of the 26 subjects studied, 22 were imaged successfully. Identification of the artery was possible for the left main stem, left anterior descending, right coronary, and left circumflex arteries respectively in 95%, 91%, 95%, and 76%. The arterial diameter at the origin could be measured in 77%, 77%, 81%, and 63%. The mean (SD) arterial diameter in each case (4.8 (0.8), 3.7 (0.5), 3.9 (0.9), and 2.9 (0.6) mm) was not significantly different from reference values. The mean length of artery visualised was 10.4 (5.2), 46.7 (22.8), 53.7 (27.9), and 26.3 (17.5) mm. In 12 healthy men the total coronary area was 30.9 (9.2) mm2 and the ratio compared with body surface area was 16.4 (4.4) mm2m2 (both p = NS compared with reference values). In seven patients in whom x ray contrast coronary angiography was available, the proximal arterial diameter was 3.9 (1.1) mm measured by magnetic resonance and 3.7 (1.0) mm by x ray contrast angiography (p = NS). The mean difference between the measurements was 0.2 (0.5) mm, and the coefficient of variation was 13.7%. All five occluded coronary arteries were identified, as were all three vein grafts. In two patients insertion of the graft into the native arteries was identified. CONCLUSIONS Magnetic resonance coronary angiography is feasible. Good results were obtained by a breath-hold, fat suppression technique, gated to late diastole. Arterial occlusions and vein grafts were readily identified. Further studies are required to establish its value in the detection of coronary stenosis and to develop the measurement of coronary flow velocity which could be used to quantify the severity of the stenosis.

UI MeSH Term Description Entries
D008279 Magnetic Resonance Imaging Non-invasive method of demonstrating internal anatomy based on the principle that atomic nuclei in a strong magnetic field absorb pulses of radiofrequency energy and emit them as radiowaves which can be reconstructed into computerized images. The concept includes proton spin tomographic techniques. Chemical Shift Imaging,MR Tomography,MRI Scans,MRI, Functional,Magnetic Resonance Image,Magnetic Resonance Imaging, Functional,Magnetization Transfer Contrast Imaging,NMR Imaging,NMR Tomography,Tomography, NMR,Tomography, Proton Spin,fMRI,Functional Magnetic Resonance Imaging,Imaging, Chemical Shift,Proton Spin Tomography,Spin Echo Imaging,Steady-State Free Precession MRI,Tomography, MR,Zeugmatography,Chemical Shift Imagings,Echo Imaging, Spin,Echo Imagings, Spin,Functional MRI,Functional MRIs,Image, Magnetic Resonance,Imaging, Magnetic Resonance,Imaging, NMR,Imaging, Spin Echo,Imagings, Chemical Shift,Imagings, Spin Echo,MRI Scan,MRIs, Functional,Magnetic Resonance Images,Resonance Image, Magnetic,Scan, MRI,Scans, MRI,Shift Imaging, Chemical,Shift Imagings, Chemical,Spin Echo Imagings,Steady State Free Precession MRI
D008297 Male Males
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D003327 Coronary Disease An imbalance between myocardial functional requirements and the capacity of the CORONARY VESSELS to supply sufficient blood flow. It is a form of MYOCARDIAL ISCHEMIA (insufficient blood supply to the heart muscle) caused by a decreased capacity of the coronary vessels. Coronary Heart Disease,Coronary Diseases,Coronary Heart Diseases,Disease, Coronary,Disease, Coronary Heart,Diseases, Coronary,Diseases, Coronary Heart,Heart Disease, Coronary,Heart Diseases, Coronary
D003331 Coronary Vessels The veins and arteries of the HEART. Coronary Arteries,Sinus Node Artery,Coronary Veins,Arteries, Coronary,Arteries, Sinus Node,Artery, Coronary,Artery, Sinus Node,Coronary Artery,Coronary Vein,Coronary Vessel,Sinus Node Arteries,Vein, Coronary,Veins, Coronary,Vessel, Coronary,Vessels, Coronary
D003971 Diastole Post-systolic relaxation of the HEART, especially the HEART VENTRICLES. Diastoles
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001026 Coronary Artery Bypass Surgical therapy of ischemic coronary artery disease achieved by grafting a section of saphenous vein, internal mammary artery, or other substitute between the aorta and the obstructed coronary artery distal to the obstructive lesion. Aortocoronary Bypass,Bypass, Coronary Artery,Bypass Surgery, Coronary Artery,Coronary Artery Bypass Grafting,Coronary Artery Bypass Surgery,Aortocoronary Bypasses,Artery Bypass, Coronary,Artery Bypasses, Coronary,Bypass, Aortocoronary,Bypasses, Aortocoronary,Bypasses, Coronary Artery,Coronary Artery Bypasses
D017023 Coronary Angiography Radiography of the vascular system of the heart muscle after injection of a contrast medium. Angiography, Coronary,Angiographies, Coronary,Coronary Angiographies

Related Publications

D J Pennell, and J Keegan, and D N Firmin, and P D Gatehouse, and S R Underwood, and D B Longmore
January 2006, International braz j urol : official journal of the Brazilian Society of Urology,
D J Pennell, and J Keegan, and D N Firmin, and P D Gatehouse, and S R Underwood, and D B Longmore
January 1999, Progress in cardiovascular diseases,
D J Pennell, and J Keegan, and D N Firmin, and P D Gatehouse, and S R Underwood, and D B Longmore
October 2001, Topics in magnetic resonance imaging : TMRI,
D J Pennell, and J Keegan, and D N Firmin, and P D Gatehouse, and S R Underwood, and D B Longmore
May 1995, Coronary artery disease,
D J Pennell, and J Keegan, and D N Firmin, and P D Gatehouse, and S R Underwood, and D B Longmore
October 2000, Journal of magnetic resonance (San Diego, Calif. : 1997),
D J Pennell, and J Keegan, and D N Firmin, and P D Gatehouse, and S R Underwood, and D B Longmore
January 2007, Cardiovascular journal of Africa,
D J Pennell, and J Keegan, and D N Firmin, and P D Gatehouse, and S R Underwood, and D B Longmore
October 1999, Heart (British Cardiac Society),
D J Pennell, and J Keegan, and D N Firmin, and P D Gatehouse, and S R Underwood, and D B Longmore
March 1987, Journal de biomateriaux dentaires : [publication du College francais de biomateriaux dentaires],
D J Pennell, and J Keegan, and D N Firmin, and P D Gatehouse, and S R Underwood, and D B Longmore
January 2000, Zeitschrift fur Kardiologie,
D J Pennell, and J Keegan, and D N Firmin, and P D Gatehouse, and S R Underwood, and D B Longmore
August 2004, Clinical medicine & research,
Copied contents to your clipboard!