Recombinant leech antiplatelet protein prevents collagen-mediated platelet aggregation but not collagen graft thrombosis in baboons. 1993

L W Schaffer, and J T Davidson, and P K Siegl, and R J Gould, and R F Nutt, and S F Brady, and T M Connolly
Department of Pharmacology, Merck Research Laboratories, West Point, PA 19486.

Leech antiplatelet protein (LAPP) is a specific inhibitor of collagen-induced human platelet aggregation and adhesion to collagen under static conditions. Recombinant LAPP (rLAPP) and L-366,763 (acetylated-Cys-Asn-Pro-Arg-Gly-Asp-Cys-NH2), a peptidyl fibrinogen receptor antagonist, were evaluated in an anesthetized baboon thrombosis model using a collagen-coated graft segment of an arteriovenous shunt to elicit thrombus formation. Animals were randomized to receive systemic intravenous administration of rLAPP (100 micrograms.kg-1 x min-1; n = 5), L-366,763 (8.5 micrograms.kg-1 x min-1; n = 3), or saline (n = 3). Despite complete and selective inhibition of type I collagen-induced ex vivo aggregation of platelets, rLAPP had no significant effect on the rate or the extent of 111-In-labeled platelet deposition onto the collagen graft and no effect on template bleeding time. In contrast, L-366,763 completely prevented platelet deposition, maintained blood flow, and significantly prolonged bleeding time at the dosage that inhibited ex vivo aggregation in response to all agonists studied. In this study, the absence of an antithrombotic benefit of rLAPP contrasted sharply with the efficacy of the fibrinogen receptor antagonist. These results demonstrate that specific inhibition of collagen-mediated platelet aggregation alone is not sufficient to prevent platelet-dependent thrombosis in this baboon model.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008297 Male Males
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009842 Oligopeptides Peptides composed of between two and twelve amino acids. Oligopeptide
D010215 Papio A genus of the subfamily CERCOPITHECINAE, family CERCOPITHECIDAE, consisting of five named species: PAPIO URSINUS (chacma baboon), PAPIO CYNOCEPHALUS (yellow baboon), PAPIO PAPIO (western baboon), PAPIO ANUBIS (or olive baboon), and PAPIO HAMADRYAS (hamadryas baboon). Members of the Papio genus inhabit open woodland, savannahs, grassland, and rocky hill country. Some authors consider MANDRILLUS a subgenus of Papio. Baboons,Baboons, Savanna,Savanna Baboons,Baboon,Baboon, Savanna,Papios,Savanna Baboon
D010314 Partial Thromboplastin Time The time required for the appearance of FIBRIN strands following the mixing of PLASMA with phospholipid platelet substitute (e.g., crude cephalins, soybean phosphatides). It is a test of the intrinsic pathway (factors VIII, IX, XI, and XII) and the common pathway (fibrinogen, prothrombin, factors V and X) of BLOOD COAGULATION. It is used as a screening test and to monitor HEPARIN therapy. Activated Partial Thromboplastin Time,Cephalin-Kaolin Coagulation Time,Kaolin-Cephalin Coagulation Time,Thromboplastin Time, Partial,Coagulation Time, Cephalin-Kaolin,Cephalin Kaolin Coagulation Time,Coagulation Time, Cephalin Kaolin,Coagulation Time, Kaolin-Cephalin,Kaolin Cephalin Coagulation Time
D010974 Platelet Aggregation The attachment of PLATELETS to one another. This clumping together can be induced by a number of agents (e.g., THROMBIN; COLLAGEN) and is part of the mechanism leading to the formation of a THROMBUS. Aggregation, Platelet
D010975 Platelet Aggregation Inhibitors Drugs or agents which antagonize or impair any mechanism leading to blood platelet aggregation, whether during the phases of activation and shape change or following the dense-granule release reaction and stimulation of the prostaglandin-thromboxane system. Antiaggregants, Platelet,Antiplatelet Agent,Antiplatelet Agents,Antiplatelet Drug,Blood Platelet Aggregation Inhibitor,Blood Platelet Antagonist,Blood Platelet Antiaggregant,PAR-1 Antagonists,Platelet Aggregation Inhibitor,Platelet Antagonist,Platelet Antagonists,Platelet Antiaggregant,Platelet Antiaggregants,Platelet Inhibitor,Protease-Activated Receptor-1 Antagonists,Antiplatelet Drugs,Blood Platelet Aggregation Inhibitors,Blood Platelet Antagonists,Blood Platelet Antiaggregants,Platelet Inhibitors,Agent, Antiplatelet,Aggregation Inhibitor, Platelet,Antagonist, Blood Platelet,Antagonist, Platelet,Antiaggregant, Blood Platelet,Antiaggregant, Platelet,Drug, Antiplatelet,Inhibitor, Platelet,Inhibitor, Platelet Aggregation,PAR 1 Antagonists,Platelet Antagonist, Blood,Platelet Antiaggregant, Blood,Protease Activated Receptor 1 Antagonists
D010980 Platelet Membrane Glycoproteins Surface glycoproteins on platelets which have a key role in hemostasis and thrombosis such as platelet adhesion and aggregation. Many of these are receptors. PM-GP,Platelet Glycoprotein,Platelet Membrane Glycoprotein,PM-GPs,Platelet Glycoproteins,Glycoprotein, Platelet,Glycoprotein, Platelet Membrane,Glycoproteins, Platelet,Glycoproteins, Platelet Membrane,Membrane Glycoprotein, Platelet,Membrane Glycoproteins, Platelet,PM GP
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA

Related Publications

L W Schaffer, and J T Davidson, and P K Siegl, and R J Gould, and R F Nutt, and S F Brady, and T M Connolly
April 2015, Leukemia,
L W Schaffer, and J T Davidson, and P K Siegl, and R J Gould, and R F Nutt, and S F Brady, and T M Connolly
September 1995, Arteriosclerosis, thrombosis, and vascular biology,
L W Schaffer, and J T Davidson, and P K Siegl, and R J Gould, and R F Nutt, and S F Brady, and T M Connolly
September 1995, The American journal of cardiology,
L W Schaffer, and J T Davidson, and P K Siegl, and R J Gould, and R F Nutt, and S F Brady, and T M Connolly
October 1982, Lancet (London, England),
L W Schaffer, and J T Davidson, and P K Siegl, and R J Gould, and R F Nutt, and S F Brady, and T M Connolly
October 1973, The Journal of clinical investigation,
L W Schaffer, and J T Davidson, and P K Siegl, and R J Gould, and R F Nutt, and S F Brady, and T M Connolly
July 2010, Kidney international,
L W Schaffer, and J T Davidson, and P K Siegl, and R J Gould, and R F Nutt, and S F Brady, and T M Connolly
July 2019, Thrombosis and haemostasis,
L W Schaffer, and J T Davidson, and P K Siegl, and R J Gould, and R F Nutt, and S F Brady, and T M Connolly
February 2008, Blood,
L W Schaffer, and J T Davidson, and P K Siegl, and R J Gould, and R F Nutt, and S F Brady, and T M Connolly
June 1980, Thrombosis and haemostasis,
L W Schaffer, and J T Davidson, and P K Siegl, and R J Gould, and R F Nutt, and S F Brady, and T M Connolly
August 2014, Die Pharmazie,
Copied contents to your clipboard!