Alternative pathways and reactions of benzyl alcohol and benzaldehyde with horse liver alcohol dehydrogenase. 1993

G L Shearer, and K Kim, and K M Lee, and C K Wang, and B V Plapp
Department of Biochemistry, University of Iowa, Iowa City 52242.

Liver alcohol dehydrogenase catalyzes the reaction of NAD+ and benzyl alcohol to form NADH and benzaldehyde by a predominantly ordered reaction. However, enzyme-alcohol binary and abortive ternary complexes form at high concentrations of benzyl alcohol, and benzaldehyde is slowly oxidized to benzoic acid. Steady-state and transient kinetic studies, equilibrium spectrophotometric measurements, product analysis, and kinetic simulations provide estimates of rate constants for a complete mechanism with the following reactions: (1) E<-->E-NAD+<-->E-NAD(+)-RCH2OH<-->E-NADH-RCHO<-->E-NADH<-->E ; (2) E-NADH<-->E-NADH-RCH2OH<-->E-RCH2OH<-->E; (3) E-NAD+<-->E-NAD(+)-RCHO-->E- NADH-RCOOH<-->E-NADH. The internal equilibrium constant for hydrogen transfer determined at 30 degrees C and pH 7 is about 5:1 in favor of E-NAD(+)-RCH2OH and has a complex pH dependence. Benzyl alcohol binds weakly to free enzyme (Kd = 7 mM) and significantly decreases the rates of binding of NAD+ and NADH. The reaction of NAD+ and benzyl alcohol is therefore kinetically ordered, not random. High concentrations of benzyl alcohol (> 1 mM) inhibit turnover by formation of the abortive E-NADH-RCH2-OH complex, which dissociates at 0.3 s-1 as compared to 6.3 s-1 for E-NADH. The oxidation of benzaldehyde by E-NAD+ (Km = 15 mM, V/E = 0.4 s-1) is inefficient relative to the oxidation of benzyl alcohol (Km = 28 microM, V/E = 3.1 s-1) and leads to a dismutation (2RCHO-->RCH2OH + RCOOH) as E-NADH reduces benzaldehyde. The results provide a description of final product distributions for the alternative reactions catalyzed by the multifunctional enzyme.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D009243 NAD A coenzyme composed of ribosylnicotinamide 5'-diphosphate coupled to adenosine 5'-phosphate by pyrophosphate linkage. It is found widely in nature and is involved in numerous enzymatic reactions in which it serves as an electron carrier by being alternately oxidized (NAD+) and reduced (NADH). (Dorland, 27th ed) Coenzyme I,DPN,Diphosphopyridine Nucleotide,Nadide,Nicotinamide-Adenine Dinucleotide,Dihydronicotinamide Adenine Dinucleotide,NADH,Adenine Dinucleotide, Dihydronicotinamide,Dinucleotide, Dihydronicotinamide Adenine,Dinucleotide, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide,Nucleotide, Diphosphopyridine
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D006736 Horses Large, hoofed mammals of the family EQUIDAE. Horses are active day and night with most of the day spent seeking and consuming food. Feeding peaks occur in the early morning and late afternoon, and there are several daily periods of rest. Equus caballus,Equus przewalskii,Horse, Domestic,Domestic Horse,Domestic Horses,Horse,Horses, Domestic
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000426 Alcohol Dehydrogenase A zinc-containing enzyme which oxidizes primary and secondary alcohols or hemiacetals in the presence of NAD. In alcoholic fermentation, it catalyzes the final step of reducing an aldehyde to an alcohol in the presence of NADH and hydrogen. Alcohol Dehydrogenase (NAD+),Alcohol Dehydrogenase I,Alcohol Dehydrogenase II,Alcohol-NAD+ Oxidoreductase,Yeast Alcohol Dehydrogenase,Alcohol Dehydrogenase, Yeast,Alcohol NAD+ Oxidoreductase,Dehydrogenase, Alcohol,Dehydrogenase, Yeast Alcohol,Oxidoreductase, Alcohol-NAD+
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001547 Benzaldehydes Compounds that consist of a benzene ring with a formyl group. They occur naturally in the seeds of many fruits and are used as FLAVORING AGENTS and fragrances, as well as precursors in pharmaceutical and plastics manufacturing.
D001592 Benzyl Alcohols Alcohols derived from the aryl radical (C6H5CH2-) and defined by C6H5CHOH. The concept includes derivatives with any substituents on the benzene ring. Phenylcarbinols,Phenylmethanols,Alcohols, Benzyl

Related Publications

G L Shearer, and K Kim, and K M Lee, and C K Wang, and B V Plapp
January 1984, Physiological chemistry and physics and medical NMR,
G L Shearer, and K Kim, and K M Lee, and C K Wang, and B V Plapp
May 1994, Biochemistry,
G L Shearer, and K Kim, and K M Lee, and C K Wang, and B V Plapp
March 1998, The Biochemical journal,
G L Shearer, and K Kim, and K M Lee, and C K Wang, and B V Plapp
March 1988, The Biochemical journal,
G L Shearer, and K Kim, and K M Lee, and C K Wang, and B V Plapp
April 2021, Archives of biochemistry and biophysics,
G L Shearer, and K Kim, and K M Lee, and C K Wang, and B V Plapp
October 1988, The Biochemical journal,
G L Shearer, and K Kim, and K M Lee, and C K Wang, and B V Plapp
August 2011, Archives of microbiology,
G L Shearer, and K Kim, and K M Lee, and C K Wang, and B V Plapp
August 1990, European journal of biochemistry,
G L Shearer, and K Kim, and K M Lee, and C K Wang, and B V Plapp
June 1967, Journal of pharmaceutical sciences,
Copied contents to your clipboard!