Nitric oxide-dependent and -independent hyperaemia due to calcitonin gene-related peptide in the rat stomach. 1993

P Holzer, and I T Lippe, and M Jocic, and C Wachter, and R Erb, and A Heinemann
University of Graz, Department of Experimental and Clinical Pharmacology, Austria.

1. Calcitonin gene-related peptide (CGRP) potently enhances mucosal blood flow in the rat stomach. The aim of this study was to examine whether CGRP also dilates extramural arteries supplying the stomach and whether the vasodilator action of CGRP involves nitric oxide (NO). 2. Rat CGRP-alpha (0.03-1 nmol kg-1, i.v.) produced a dose-dependent increase in blood flow through the left gastric artery (LGA) as determined by an ultrasonic transit time technique in urethane-anaesthetized rats. Blockade of NO synthesis by NG-nitro-L-arginine methyl ester (L-NAME, 20 and 60 mumol kg-1, i.v.) significantly reduced basal blood flow (BF) in the LGA and attenuated the hyperaemic activity of CGRP by a factor of 2.8-4. D-NAME tended to enhance basal BF in the LGA but had no influence on the dilator activity of CGRP. The ability of vasoactive intestinal polypeptide to increase left gastric arterial blood flow remained unaltered by L-NAME. 3. L-NAME (20 and 60 mumol kg-1, i.v.) evoked a prompt and sustained rise of mean arterial blood pressure (MAP) and caused a slight decrease in the hypotensive activity of CGRP. In contrast, D-NAME induced a delayed and moderate increase in MAP and did not influence the hypotensive activity of CGRP. 4. Rat CGRP-alpha dilated the isolated perfused bed of the rat LGA precontracted with methoxamine and was 3 times more potent in this respect than rat CGRP-beta. The dilator action of rat CGRP-alpha in this preparation was not affected by L-NAME or D-NAME (40 microM). 5. L-NAME (60 micromol kg-1, i.v.) reduced gastric mucosal blood flow as assessed by laser Doppler flowmetry and diminished the hyperaemic activity of rat CGRP-alpha in the gastric mucosa by a factor of 4.5, whereas D-NAME was without effect.6. These data show that CGRP is a potent dilator of mucosal and extramural resistance vessels in the rat stomach. Its dilator action involves both NO-dependent and NO-independent mechanisms.

UI MeSH Term Description Entries
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D009569 Nitric Oxide A free radical gas produced endogenously by a variety of mammalian cells, synthesized from ARGININE by NITRIC OXIDE SYNTHASE. Nitric oxide is one of the ENDOTHELIUM-DEPENDENT RELAXING FACTORS released by the vascular endothelium and mediates VASODILATION. It also inhibits platelet aggregation, induces disaggregation of aggregated platelets, and inhibits platelet adhesion to the vascular endothelium. Nitric oxide activates cytosolic GUANYLATE CYCLASE and thus elevates intracellular levels of CYCLIC GMP. Endogenous Nitrate Vasodilator,Mononitrogen Monoxide,Nitric Oxide, Endothelium-Derived,Nitrogen Monoxide,Endothelium-Derived Nitric Oxide,Monoxide, Mononitrogen,Monoxide, Nitrogen,Nitrate Vasodilator, Endogenous,Nitric Oxide, Endothelium Derived,Oxide, Nitric,Vasodilator, Endogenous Nitrate
D010477 Perfusion Treatment process involving the injection of fluid into an organ or tissue. Perfusions
D012039 Regional Blood Flow The flow of BLOOD through or around an organ or region of the body. Blood Flow, Regional,Blood Flows, Regional,Flow, Regional Blood,Flows, Regional Blood,Regional Blood Flows
D001794 Blood Pressure PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS. Systolic Pressure,Diastolic Pressure,Pulse Pressure,Pressure, Blood,Pressure, Diastolic,Pressure, Pulse,Pressure, Systolic,Pressures, Systolic
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D005260 Female Females
D005753 Gastric Mucosa Lining of the STOMACH, consisting of an inner EPITHELIUM, a middle LAMINA PROPRIA, and an outer MUSCULARIS MUCOSAE. The surface cells produce MUCUS that protects the stomach from attack by digestive acid and enzymes. When the epithelium invaginates into the LAMINA PROPRIA at various region of the stomach (CARDIA; GASTRIC FUNDUS; and PYLORUS), different tubular gastric glands are formed. These glands consist of cells that secrete mucus, enzymes, HYDROCHLORIC ACID, or hormones. Cardiac Glands,Gastric Glands,Pyloric Glands,Cardiac Gland,Gastric Gland,Gastric Mucosas,Gland, Cardiac,Gland, Gastric,Gland, Pyloric,Glands, Cardiac,Glands, Gastric,Glands, Pyloric,Mucosa, Gastric,Mucosas, Gastric,Pyloric Gland
D006339 Heart Rate The number of times the HEART VENTRICLES contract per unit of time, usually per minute. Cardiac Rate,Chronotropism, Cardiac,Heart Rate Control,Heartbeat,Pulse Rate,Cardiac Chronotropy,Cardiac Chronotropism,Cardiac Rates,Chronotropy, Cardiac,Control, Heart Rate,Heart Rates,Heartbeats,Pulse Rates,Rate Control, Heart,Rate, Cardiac,Rate, Heart,Rate, Pulse
D006940 Hyperemia The presence of an increased amount of blood in a body part or an organ leading to congestion or engorgement of blood vessels. Hyperemia can be due to increase of blood flow into the area (active or arterial), or due to obstruction of outflow of blood from the area (passive or venous). Active Hyperemia,Arterial Hyperemia,Passive Hyperemia,Reactive Hyperemia,Venous Congestion,Venous Engorgement,Congestion, Venous,Engorgement, Venous,Hyperemia, Active,Hyperemia, Arterial,Hyperemia, Passive,Hyperemia, Reactive,Hyperemias,Hyperemias, Reactive,Reactive Hyperemias

Related Publications

P Holzer, and I T Lippe, and M Jocic, and C Wachter, and R Erb, and A Heinemann
July 1995, Gastroenterology,
P Holzer, and I T Lippe, and M Jocic, and C Wachter, and R Erb, and A Heinemann
February 1992, European journal of pharmacology,
P Holzer, and I T Lippe, and M Jocic, and C Wachter, and R Erb, and A Heinemann
November 1994, The Journal of physiology,
P Holzer, and I T Lippe, and M Jocic, and C Wachter, and R Erb, and A Heinemann
April 2006, The European journal of neuroscience,
P Holzer, and I T Lippe, and M Jocic, and C Wachter, and R Erb, and A Heinemann
January 1989, Life sciences,
P Holzer, and I T Lippe, and M Jocic, and C Wachter, and R Erb, and A Heinemann
July 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience,
P Holzer, and I T Lippe, and M Jocic, and C Wachter, and R Erb, and A Heinemann
October 1995, Brain research,
P Holzer, and I T Lippe, and M Jocic, and C Wachter, and R Erb, and A Heinemann
May 1998, Journal of the autonomic nervous system,
P Holzer, and I T Lippe, and M Jocic, and C Wachter, and R Erb, and A Heinemann
May 1993, Gastroenterology,
P Holzer, and I T Lippe, and M Jocic, and C Wachter, and R Erb, and A Heinemann
April 1999, Neuropeptides,
Copied contents to your clipboard!