DNA strand specificity of temporal RNA classes produced during infection of Bacillus subtilis by SP82. 1976

J M Lawrie, and G B Spiegelman, and H R Whiteley

The DNA of the Bacillus subtilis bacteriophage SP82 has been separated into heavy (H) and light (L) fractions by centrifugation in buoyant density gradients in the presence of polyguanylic acid. Competition-hybridization experiments were performed with these separated fractions using RNAs isolated from cells labeled at intervals which account for 80% of the lytic cycle and unlabeled competitor RNAs isolated from phage-infected cells at 2-min intervals throughout infection. The analysis of temporal RNA classes were facilitated by use of a double reciprocal plot of the data. Five temporal classes binding to the H fraction and three binding to the L fraction were detected; the possible existence of an additional class transcribed from the H fraction is discussed. RNA synthesized in the presence of chloramphenicol contains two of the three classes produced from L-DNA and two of the five classes transcribed from H-DNA.

UI MeSH Term Description Entries
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D002701 Chloramphenicol An antibiotic first isolated from cultures of Streptomyces venequelae in 1947 but now produced synthetically. It has a relatively simple structure and was the first broad-spectrum antibiotic to be discovered. It acts by interfering with bacterial protein synthesis and is mainly bacteriostatic. (From Martindale, The Extra Pharmacopoeia, 29th ed, p106) Cloranfenicol,Kloramfenikol,Levomycetin,Amphenicol,Amphenicols,Chlornitromycin,Chlorocid,Chloromycetin,Detreomycin,Ophthochlor,Syntomycin
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D001412 Bacillus subtilis A species of gram-positive bacteria that is a common soil and water saprophyte. Natto Bacteria,Bacillus subtilis (natto),Bacillus subtilis subsp. natto,Bacillus subtilis var. natto
D001435 Bacteriophages Viruses whose hosts are bacterial cells. Phages,Bacteriophage,Phage
D012367 RNA, Viral Ribonucleic acid that makes up the genetic material of viruses. Viral RNA
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription

Related Publications

J M Lawrie, and G B Spiegelman, and H R Whiteley
December 1972, Virology,
J M Lawrie, and G B Spiegelman, and H R Whiteley
December 1964, Journal of molecular biology,
J M Lawrie, and G B Spiegelman, and H R Whiteley
October 1978, Archives of biochemistry and biophysics,
J M Lawrie, and G B Spiegelman, and H R Whiteley
November 1971, Virology,
J M Lawrie, and G B Spiegelman, and H R Whiteley
September 1978, Journal of virology,
J M Lawrie, and G B Spiegelman, and H R Whiteley
October 1983, The Journal of biological chemistry,
J M Lawrie, and G B Spiegelman, and H R Whiteley
April 1978, Biochemical and biophysical research communications,
Copied contents to your clipboard!